MarC Anonym ....
2009-Mar-06 10:53 UTC
[R] modifying a built in function from the stats package (fixing arima) (CONCLUSIONS)
Thanks a lot to everybody that helped me out with this. Conclusions: (1) In order to edit arima in R:>fix(arima)or alternatively:>arima<-edit(arima)(2) This is not contained in the "Introduction to R" manual. (3) A "productive" fix of arima is attached (arma coefficients printed out and error catched so that it doesn't halt parent loops to search for candidate coefficients): Note 1: "productive" means I'm a beginner in R so there is probably a better way to print the error message and fill the output arguments (I only return NA in aic,var and sigma2). Note 2: Changing BFGS to Nelder?Mead in "exitpoint 0" changes the coefficients for which arima can't fit a model but results in terms of aic and sigma2 also change significantly. By visual inspection I think that BFGS works better. function (x, order = c(0, 0, 0), seasonal = list(order = c(0, 0, 0), period = NA), xreg = NULL, include.mean = TRUE, transform.pars TRUE, fixed = NULL, init = NULL, method = c("CSS-ML", "ML", "CSS"), n.cond, optim.control = list(), kappa = 1e+06) { "%+%" <- function(a, b) .Call(R_TSconv, a, b) upARIMA <- function(mod, phi, theta) { p <- length(phi) q <- length(theta) mod$phi <- phi mod$theta <- theta r <- max(p, q + 1) if (p > 0) mod$T[1:p, 1] <- phi if (r > 1) mod$Pn[1:r, 1:r] <- .Call(R_getQ0, phi, theta) else if (p > 0) mod$Pn[1, 1] <- 1/(1 - phi^2) else mod$Pn[1, 1] <- 1 mod$a[] <- 0 mod } arimaSS <- function(y, mod) { .Call(R_ARIMA_Like, y, mod$phi, mod$theta, mod$Delta, mod$a, mod$P, mod$Pn, as.integer(0), TRUE) } armafn <- function(p, trans) { par <- coef par[mask] <- p trarma <- .Call(R_ARIMA_transPars, par, arma, trans) Z <- upARIMA(mod, trarma[[1]], trarma[[2]]) if (ncxreg > 0) x <- x - xreg %*% par[narma + (1:ncxreg)] res <- .Call(R_ARIMA_Like, x, Z$phi, Z$theta, Z$Delta, Z$a, Z$P, Z$Pn, as.integer(0), FALSE) s2 <- res[1]/res[3] 0.5 * (log(s2) + res[2]/res[3]) } armaCSS <- function(p) { par <- as.double(fixed) par[mask] <- p trarma <- .Call(R_ARIMA_transPars, par, arma, FALSE) if (ncxreg > 0) x <- x - xreg %*% par[narma + (1:ncxreg)] res <- .Call(R_ARIMA_CSS, x, arma, trarma[[1]], trarma[[2]], as.integer(ncond), FALSE) 0.5 * log(res) } arCheck <- function(ar) { p <- max(which(c(1, -ar) != 0)) - 1 if (!p) return(TRUE) all(Mod(polyroot(c(1, -ar[1:p]))) > 1) } maInvert <- function(ma) { q <- length(ma) q0 <- max(which(c(1, ma) != 0)) - 1 if (!q0) return(ma) roots <- polyroot(c(1, ma[1:q0])) ind <- Mod(roots) < 1 if (all(!ind)) return(ma) if (q0 == 1) return(c(1/ma[1], rep(0, q - q0))) roots[ind] <- 1/roots[ind] x <- 1 for (r in roots) x <- c(x, 0) - c(0, x)/r c(Re(x[-1]), rep(0, q - q0)) } series <- deparse(substitute(x)) if (NCOL(x) > 1) stop("only implemented for univariate time series") method <- match.arg(method) x <- as.ts(x) if (!is.numeric(x)) stop("'x' must be numeric") storage.mode(x) <- "double" dim(x) <- NULL n <- length(x) if (!missing(order)) if (!is.numeric(order) || length(order) != 3 || any(order < 0)) stop("'order' must be a non-negative numeric vector of length 3") if (!missing(seasonal)) if (is.list(seasonal)) { if (is.null(seasonal$order)) stop("'seasonal' must be a list with component 'order'") if (!is.numeric(seasonal$order) || length(seasonal$order) ! 3 || any(seasonal$order < 0)) stop("'seasonal$order' must be a non-negative numeric vector of length 3") } else if (is.numeric(order)) { if (length(order) == 3) seasonal <- list(order = seasonal) else ("'seasonal' is of the wrong length") } else stop("'seasonal' must be a list with component 'order'") if (is.null(seasonal$period) || is.na(seasonal$period) || seasonal$period == 0) seasonal$period <- frequency(x) arma <- as.integer(c(order[-2], seasonal$order[-2], seasonal$period, order[2], seasonal$order[2])) narma <- sum(arma[1:4]) xtsp <- tsp(x) tsp(x) <- NULL Delta <- 1 for (i in seq_len(order[2])) Delta <- Delta %+% c(1, -1) for (i in seq_len(seasonal$order[2])) Delta <- Delta %+% c(1, rep(0, seasonal$period - 1), -1) Delta <- -Delta[-1] nd <- order[2] + seasonal$order[2] n.used <- sum(!is.na(x)) - length(Delta) if (is.null(xreg)) { ncxreg <- 0 } else { nmxreg <- deparse(substitute(xreg)) if (NROW(xreg) != n) stop("lengths of 'x' and 'xreg' do not match") ncxreg <- NCOL(xreg) xreg <- as.matrix(xreg) storage.mode(xreg) <- "double" } class(xreg) <- NULL if (ncxreg > 0 && is.null(colnames(xreg))) colnames(xreg) <- if (ncxreg == 1) nmxreg else paste(nmxreg, 1:ncxreg, sep = "") if (include.mean && (nd == 0)) { xreg <- cbind(intercept = rep(1, n), xreg = xreg) ncxreg <- ncxreg + 1 } if (method == "CSS-ML") { anyna <- any(is.na(x)) if (ncxreg) anyna <- anyna || any(is.na(xreg)) if (anyna) method <- "ML" } if (method == "CSS" || method == "CSS-ML") { ncond <- order[2] + seasonal$order[2] * seasonal$period ncond1 <- order[1] + seasonal$period * seasonal$order[1] ncond <- if (!missing(n.cond)) ncond + max(n.cond, ncond1) else ncond + ncond1 } else ncond <- 0 if (is.null(fixed)) fixed <- rep(NA_real_, narma + ncxreg) else if (length(fixed) != narma + ncxreg) stop("wrong length for 'fixed'") mask <- is.na(fixed) no.optim <- !any(mask) if (no.optim) transform.pars <- FALSE if (transform.pars) { ind <- arma[1] + arma[2] + seq_len(arma[3]) if (any(!mask[seq_len(arma[1])]) || any(!mask[ind])) { warning("some AR parameters were fixed: setting transform.pars FALSE") transform.pars <- FALSE } } init0 <- rep(0, narma) parscale <- rep(1, narma) if (ncxreg) { cn <- colnames(xreg) orig.xreg <- (ncxreg == 1) || any(!mask[narma + 1:ncxreg]) if (!orig.xreg) { S <- svd(na.omit(xreg)) xreg <- xreg %*% S$v } fit <- lm(x ~ xreg - 1, na.action = na.omit) n.used <- sum(!is.na(resid(fit))) - length(Delta) init0 <- c(init0, coef(fit)) ses <- summary(fit)$coefficients[, 2] parscale <- c(parscale, 10 * ses) } if (n.used <= 0) stop("too few non-missing observations") if (!is.null(init)) { if (length(init) != length(init0)) stop("'init' is of the wrong length") if (any(ind <- is.na(init))) init[ind] <- init0[ind] if (method == "ML") { if (arma[1] > 0) if (!arCheck(init[1:arma[1]])) stop("non-stationary AR part") if (arma[3] > 0) if (!arCheck(init[sum(arma[1:2]) + 1:arma[3]])) stop("non-stationary seasonal AR part") if (transform.pars) init <- .Call(R_ARIMA_Invtrans, as.double(init), arma) } } else init <- init0 coef <- as.double(fixed) skip<-0 if (!("parscale" %in% names(optim.control))) optim.control$parscale <- parscale[mask] if (method == "CSS") { res <- if (no.optim) list(convergence = 0, par = numeric(0), value armaCSS(numeric(0))) else optim(init[mask], armaCSS, method = "BFGS", hessian = TRUE, control = optim.control) if (res$convergence > 0) warning("possible convergence problem: optim gave code=", res$convergence) coef[mask] <- res$par trarma <- .Call(R_ARIMA_transPars, coef, arma, FALSE) mod <- makeARIMA(trarma[[1]], trarma[[2]], Delta, kappa) if (ncxreg > 0) x <- x - xreg %*% coef[narma + (1:ncxreg)] arimaSS(x, mod) val <- .Call(R_ARIMA_CSS, x, arma, trarma[[1]], trarma[[2]], as.integer(ncond), TRUE) sigma2 <- val[[1]] var <- if (no.optim) numeric(0) else solve(res$hessian * n.used) } else { if (method == "CSS-ML") { exitpoint<-(-1); res <- if (no.optim) list(convergence = 0, par = numeric(0), value armaCSS(numeric(0))) else optim(init[mask], armaCSS, method = "BFGS", hessian = FALSE, control = optim.control) if (res$convergence == 0) init[mask] <- res$par if (arma[1] > 0) if (!arCheck(init[1:arma[1]])) stop("non-stationary AR part from CSS") if (arma[3] > 0) if (!arCheck(init[sum(arma[1:2]) + 1:arma[3]])) stop("non-stationary seasonal AR part from CSS") ncond <- 0 } if (transform.pars) { init <- .Call(R_ARIMA_Invtrans, init, arma) if (arma[2] > 0) { ind <- arma[1] + 1:arma[2] init[ind] <- maInvert(init[ind]) } if (arma[4] > 0) { ind <- sum(arma[1:3]) + 1:arma[4] init[ind] <- maInvert(init[ind]) } } trarma <- .Call(R_ARIMA_transPars, init, arma, transform.pars) mod <- makeARIMA(trarma[[1]], trarma[[2]], Delta, kappa) exitpoint<-(0); tryCatch({ res <- if (no.optim) list(convergence = 0, par = numeric(0), value armafn(numeric(0), as.logical(transform.pars))) else optim(init[mask], armafn, method = "BFGS", hessian = TRUE, control = optim.control, trans = as.logical(transform.pars)) if (res$convergence > 0) warning("possible convergence problem: optim gave code=", res$convergence) coef[mask] <- res$par if (transform.pars) { if (arma[2] > 0) { ind <- arma[1] + 1:arma[2] if (all(mask[ind])) coef[ind] <- maInvert(coef[ind]) } if (arma[4] > 0) { ind <- sum(arma[1:3]) + 1:arma[4] if (all(mask[ind])) coef[ind] <- maInvert(coef[ind]) } if (any(coef[mask] != res$par)) { oldcode <- res$convergence exitpoint<-1 res <- optim(coef[mask], armafn, method = "BFGS", hessian = TRUE, control = list(maxit = 0, parscale optim.control$parscale), trans = TRUE) res$convergence <- oldcode coef[mask] <- res$par } A <- .Call(R_ARIMA_Gradtrans, as.double(coef), arma) A <- A[mask, mask] var <- t(A) %*% solve(res$hessian * n.used) %*% A coef <- .Call(R_ARIMA_undoPars, coef, arma) } else var <- if (no.optim) numeric(0) else solve(res$hessian * n.used) trarma <- .Call(R_ARIMA_transPars, coef, arma, FALSE) mod <- makeARIMA(trarma[[1]], trarma[[2]], Delta, kappa) val <- if (ncxreg > 0) arimaSS(x - xreg %*% coef[narma + (1:ncxreg)], mod) else arimaSS(x, mod) sigma2 <- val[[1]][1]/n.used skip<-0 }, error=function(e) { print(paste(order[1],order[2],order[3],seasonal$order[1],seasona l$order[2],seasonal$order[3],"SARIMA couldn't be fitted (exitpoint:",exitpoint,")")) skip<<-1 }) } if (skip==0){ value <- 2 * n.used * res$value + n.used + n.used * log(2 * pi) aic <- if (method != "CSS") value + 2 * sum(mask) + 2 else NA nm <- NULL if (arma[1] > 0) nm <- c(nm, paste("ar", 1:arma[1], sep = "")) if (arma[2] > 0) nm <- c(nm, paste("ma", 1:arma[2], sep = "")) if (arma[3] > 0) nm <- c(nm, paste("sar", 1:arma[3], sep = "")) if (arma[4] > 0) nm <- c(nm, paste("sma", 1:arma[4], sep = "")) if (ncxreg > 0) { nm <- c(nm, cn) if (!orig.xreg) { ind <- narma + 1:ncxreg coef[ind] <- S$v %*% coef[ind] A <- diag(narma + ncxreg) A[ind, ind] <- S$v A <- A[mask, mask] var <- A %*% var %*% t(A) } } names(coef) <- nm if (!no.optim) dimnames(var) <- list(nm[mask], nm[mask]) resid <- val[[2]] tsp(resid) <- xtsp class(resid) <- "ts" res <- list(coef = coef, sigma2 = sigma2, var.coef = var, mask = mask, loglik = -0.5 * value, aic = aic, arma = arma, residuals = resid, call = match.call(), series = series, code = res$convergence, n.cond = ncond, model = mod) class(res) <- "Arima" res} else{ aic<-NA var<-NA sigma2<-NA res <- list(var.coef = var, aic = aic, arma = arma) class(res) <- "Arima" res } }