hameeza ahmed via llvm-dev
2017-Jun-30 23:11 UTC
[llvm-dev] KNL Assembly Code for Matrix Multiplication
Further, I need to understand it with putting actual values since it is
very confusing...
vmovdqa64 zmm22, zmmword ptr [rip + .LCPI0_0] ; i am supposing this will
move 64 bit values from mentioned indexes though i still believe each value
is required to be 32 bit. Now the indexes are [8, 9, 10, 11, 12, 13, 14,
15]. now when these indexes are added with rip it points to the value
actually present at these locations so zmm22 will contain values not
indexes. suppose [8]={1}, [9]={5}, [10]={4}...... so zmm22 will become
zmm22={1, 5, 4, 3, 8, 7, 6, 2}......these are those 64 bit values loaded
from memory indexes.
vpbroadcastq zmm2, qword ptr [rip + .LCPI0_2]; here .LCPI0_2=4000 means
broadcast value at this index for eg this location contains 2 so
zmm2={2,2,2,2.....2}.
vpmuludq zmm14, zmm10, zmm2 ; this step is value multiplication not index,
there seems no point in multiplying these values here since we havent used
A and B yet???
Please clarify my understanding about these initial steps; if these get
cleared then only i will be able to move forward.....
Thank You
On Sat, Jul 1, 2017 at 3:47 AM, hameeza ahmed <hahmed2305 at gmail.com>
wrote:
>
> ---------- Forwarded message ----------
> From: hameeza ahmed <hahmed2305 at gmail.com>
> Date: Sat, Jul 1, 2017 at 3:46 AM
> Subject: Re: [llvm-dev] KNL Assembly Code for Matrix Multiplication
> To: Craig Topper <craig.topper at gmail.com>
>
>
> Thank You.
>
> in this step;
> vmovdqa64 zmm22, zmmword ptr [rip + .LCPI0_0] # zmm22 >
[8,9,10,11,12,13,14,15]
> the indexes are 64 bit but the element stored at these position is 32 bit
> since we are dealing with integers and ir also shows this.
> here we are loading 32 bit value from those 64 bit indexes which means
> zmm22 will hold values 32 bit from these 64 bit position so there is
> capacity of 16 32 bit elements then why all this??
>
> this is mentioned in IR as
>
> %5 = getelementptr inbounds [1000 x i32], [1000 x i32]* %0, i64
> %indvars.iv34, i64 %4
> %6 = bitcast i32* %5 to <16 x i32>*
> %wide.load = load <16 x i32>, <16 x i32>* %6, align 4, !tbaa
!1
>
>
> here indvars are 64 bit values but the values loaded from these indexes
> (step 3) is 32 bit???
>
> Please correct me.
>
>
>
>
>
> On Fri, Jun 30, 2017 at 8:59 PM, Craig Topper <craig.topper at
gmail.com>
> wrote:
>
>> Some comments inline, I'll need to look more later.
>>
>> ~Craig
>>
>> On Fri, Jun 30, 2017 at 5:28 AM, hameeza ahmed via llvm-dev <
>> llvm-dev at lists.llvm.org> wrote:
>>
>>> Hello, I want some help in understanding knl intel assembly of
matrix
>>> multiplication code. some of the things are not clear;
>>>
>>> here .c file:
>>>
>>> #include <stdio.h>
>>> #define N 1000
>>>
>>> // This function multiplies A[][] and B[][], and stores
>>> // the result in C[][]
>>> void multiply(int A[][N], int B[][N], int C[][N])
>>> {
>>> int i, j, k, r;
>>> for (i = 0; i < N; i++)
>>> {
>>> for (j = 0; j < N; j++)
>>> {
>>> r = 0;
>>> for (k = 0; k < N; k++) {
>>> r += A[i][k]*B[k][j];}
>>> C[i][j] = r;
>>>
>>> }
>>>
>>> }
>>> }
>>>
>>> here .s file: * the code that i want to ask is in red color.*
>>>
>>> .text
>>> .intel_syntax noprefix
>>> .file "matn_o3.ll"
>>> .section .rodata,"a", at progbits
>>> .p2align 6
>>> .LCPI0_0:
>>> .quad 8 # 0x8
>>> .quad 9 # 0x9
>>> .quad 10 # 0xa
>>> .quad 11 # 0xb
>>> .quad 12 # 0xc
>>> .quad 13 # 0xd
>>> .quad 14 # 0xe
>>> .quad 15 # 0xf
>>> .LCPI0_1:
>>> .quad 0 # 0x0
>>> .quad 1 # 0x1
>>> .quad 2 # 0x2
>>> .quad 3 # 0x3
>>> .quad 4 # 0x4
>>> .quad 5 # 0x5
>>> .quad 6 # 0x6
>>> .quad 7 # 0x7
>>> .section .rodata.cst8,"aM", at progbits,8
>>> .p2align 3
>>> .LCPI0_2:
>>> .quad 4000 # 0xfa0
>>> .LCPI0_3:
>>> .quad 64000 # 0xfa00
>>> .LCPI0_4:
>>> .quad 128000 # 0x1f400
>>> .LCPI0_5:
>>> .quad 192000 # 0x2ee00
>>> .LCPI0_6:
>>> .quad 64 # 0x40
>>> .text
>>> .globl multiply
>>> .p2align 4, 0x90
>>> .type multiply, at function
>>> multiply: # @multiply
>>> .cfi_startproc
>>> # BB#0:
>>> push rbp
>>> .Lcfi0:
>>> .cfi_def_cfa_offset 16
>>> push r15
>>> .Lcfi1:
>>> .cfi_def_cfa_offset 24
>>> push r14
>>> .Lcfi2:
>>> .cfi_def_cfa_offset 32
>>> push r12
>>> .Lcfi3:
>>> .cfi_def_cfa_offset 40
>>> push rbx
>>> .Lcfi4:
>>> .cfi_def_cfa_offset 48
>>> .Lcfi5:
>>> .cfi_offset rbx, -48
>>> .Lcfi6:
>>> .cfi_offset r12, -40
>>> .Lcfi7:
>>> .cfi_offset r14, -32
>>> .Lcfi8:
>>> .cfi_offset r15, -24
>>> .Lcfi9:
>>> .cfi_offset rbp, -16
>>> lea r8, [rdi + 3856]
>>> xor r9d, r9d
>>> vmovdqa64 zmm22, zmmword ptr [rip + .LCPI0_0] # zmm22 >>>
[8,9,10,11,12,13,14,15]
>>> vmovdqa64 zmm23, zmmword ptr [rip + .LCPI0_1] # zmm23 >>>
[0,1,2,3,4,5,6,7]
>>> vpbroadcastq zmm2, qword ptr [rip + .LCPI0_2]
>>> vpbroadcastq zmm3, rsi
>>> add rsi, 3856000
>>> vpbroadcastq zmm4, qword ptr [rip + .LCPI0_3]
>>> vpbroadcastq zmm5, qword ptr [rip + .LCPI0_4]
>>> vpbroadcastq zmm6, qword ptr [rip + .LCPI0_5]
>>> kxnorw k1, k0, k0
>>> kshiftrw k1, k1, 8
>>> vpbroadcastq zmm7, qword ptr [rip + .LCPI0_6]
>>> .p2align 4, 0x90
>>> .LBB0_1: # %.preheader26
>>> # =>This Loop Header:
Depth=1
>>> # Child Loop BB0_2
Depth 2
>>> # Child Loop BB0_3
Depth 3
>>> # Child Loop BB0_5
Depth 3
>>> xor r11d, r11d
>>> .p2align 4, 0x90
>>> .LBB0_2: # %.preheader
>>> # Parent Loop BB0_1
Depth=1
>>> # => This Loop Header:
Depth=2
>>> # Child Loop BB0_3
Depth 3
>>> # Child Loop BB0_5
Depth 3
>>> vpxord zmm8, zmm8, zmm8
>>> mov ecx, 960
>>> vmovdqa64 zmm9, zmm23
>>> vmovdqa64 zmm10, zmm22
>>> vpxord zmm11, zmm11, zmm11
>>> vpxord zmm12, zmm12, zmm12
>>> vpxord zmm13, zmm13, zmm13
>>> .p2align 4, 0x90
>>> .LBB0_3: # %vector.body
>>> # Parent Loop BB0_1
Depth=1
>>> # Parent Loop BB0_2
Depth=2
>>> # => This Inner Loop
Header:
>>> Depth=3
>>> # this bb will run 15 times
>>> vmovq rax, xmm9
>>> imul r10, r9, 4000
>>> lea rbx, [rdi + r10]
>>> *vpmuludq zmm14, zmm10, zmm2 ; this is BB for vector here we
have
>>> to do gather for B due to arbitrary addresses so here
>>> zmm10=[8,9,10,11,12,13,14,15]. it means zmm10 contains 8 values
present in
>>> these indexes? and zmm2=[4000, 4000,.....4000]. these are the
indexes for B
>>> we need to multiple indexes with stride=4000. i know here these
indexes are
>>> 64 bit but the values stored in these locations are 32 bits then
the load
>>> using zmm10 index will give 8 elements of 32 bits present in these
>>> locations, so do the registers contain 8 elements of 32 bits
present at
>>> specified indexes?? so after multiplication we get indexes for
higher 8
>>> elements of B i.e [3200,3600,40000,.......54000].*
>>>
>>> * vpsrlq zmm15, zmm10, 32 ; i dont understand the need
for
>>> this step, please explain the purpose of all these steps. here
vpsrlq will
>>> shift right zmm10 values by 256 bits (32*8)....zmmm10
initially=**[8,9,10,11,12,13,14,15].
>>> it will now become [0,0,0,0,8,9,10,11]...Am I correct? Please
explain me
>>> the purpose of this step.*
>>> * vpmuludq zmm15, zmm15, zmm2 ; similarly **dont understand the
>>> need for this step.*
>>> * vpsllq zmm15, zmm15, 32 ; **dont understand the need for this
step*
>>> * vpaddq zmm14, zmm14, zmm3 ; *
>>> * vpaddq zmm14, zmm15, zmm14 ; **dont understand the need for this
step*
>>>
>>
>> vpsrlq zmm15, zmm10, 32 shifts every 64-bit element in zmm10 right by
32
>> bits. I believe this effectively taking every odd numbered 32-bit
element
>> and moving them to the next lowest even numbered 32-bit element.
>>
>> vmuludq multiplies all even numbered 32-bit elements and creates 64-bit
>> results.
>>
>> The combination of the shifts, vpmuludq, and vpaddq is to multiply
64-bit
>> elements and create a 64-bit elements result. We don't have an
instruction
>> for this so we have to multiply the low 32-bits of each element and the
>> high 32-bits of each element separately and add the results together.
Looks
>> like we determined that the high 32-bits of one of the inputs is all
zeros
>> so we skipped 1 of the multiplies and adds that would normally be
required
>> for this operation.
>>
>>
>>
>>> * vpbroadcastq zmm15, r11 ; **r11 changes when loop variable j
changes
>>> whats the need of this step?*
>>> * vpsllq zmm15, zmm15, 2 ; **dont understand the need for this
step*
>>> * vpaddq zmm14, zmm14, zmm15 ; **dont understand the need for this
step*
>>> * vpmuludq zmm16, zmm9, zmm2 ; **here same as before the lower 8
>>> elements of B indexes are computed as
Zmm16=[0,4000,8000,.......28000]*
>>> * vpsrlq zmm17, zmm9, 32 **; **dont understand the need for this
step*
>>> * vpmuludq zmm17, zmm17, zmm2 **; **dont understand the need for
this
>>> step*
>>> * vpsllq zmm17, zmm17, 32 **; **dont understand the need for this
step*
>>> * vpaddq zmm16, zmm16, zmm3 *
>>> * vpaddq zmm16, zmm17, zmm16 **; **dont understand the need for
this
>>> step*
>>> * vpaddq zmm15, zmm16, zmm15 **; **dont understand the need for
this
>>> step*
>>> * vpaddq zmm16, zmm15, zmm4*
>>> * vpaddq zmm17, zmm14, zmm4*
>>> * vpaddq zmm18, zmm15, zmm5*
>>> * vpaddq zmm19, zmm14, zmm5*
>>> * vpaddq zmm20, zmm15, zmm6*
>>> * vpaddq zmm21, zmm14, zmm6*
>>> * kmovw k2, k1 **; **dont understand the need for this step*
>>>
>>
>> The gather instruction requires a mask of which elements to read. When
>> the gather completes, if there are no faults it will have written the
mask
>> register to 0. So it needs to reloaded for each gather.
>>
>>
>>> * vpgatherqd ymm0 {k2}, zmmword ptr [zmm14] ; since zmm14 contains
8
>>> indexes ( or values at these 8 indexes???) so it will load 8
elements not
>>> 16. here it should be zmm14**=[3200,3600,40000,.......54000]. but
by
>>> the above computation these indexes are changes??*
>>> * kxnorw k2, k0, k0 **; **dont understand the need for this step*
>>>
>> * vpgatherqd ymm14 {k2}, zmmword ptr [zmm15] **; **here again issues
>>> with index zmm15. it should be **[0,4000,8000,.......28000] but its
>>> different due to above computation.*
>>> * vinserti64x4 zmm0, zmm14, ymm0, 1*
>>> * kmovw k2, k1*
>>> * vpgatherqd ymm14 {k2}, zmmword ptr [zmm17]*
>>> * kxnorw k2, k0, k0*
>>> * vpgatherqd ymm15 {k2}, zmmword ptr [zmm16]*
>>> * vinserti64x4 zmm14, zmm15, ymm14, 1*
>>> * kmovw k2, k1*
>>> * vpgatherqd ymm15 {k2}, zmmword ptr [zmm19]*
>>> * kxnorw k2, k0, k0*
>>> * vpgatherqd ymm16 {k2}, zmmword ptr [zmm18]*
>>> * vinserti64x4 zmm15, zmm16, ymm15, 1*
>>> * kmovw k2, k1*
>>> * vpgatherqd ymm1 {k2}, zmmword ptr [zmm21]*
>>> * kxnorw k2, k0, k0*
>>> * vpgatherqd ymm16 {k2}, zmmword ptr [zmm20]*
>>> * vinserti64x4 zmm1, zmm16, ymm1, 1*
>>> * vpmulld zmm0, zmm0, zmmword ptr [rbx + 4*rax]*
>>> vpmulld zmm14, zmm14, zmmword ptr [rbx + 4*rax + 64]
>>> vpmulld zmm15, zmm15, zmmword ptr [rbx + 4*rax + 128]
>>> vpmulld zmm1, zmm1, zmmword ptr [rbx + 4*rax + 192]
>>> vpaddd zmm8, zmm0, zmm8
>>> vpaddd zmm11, zmm14, zmm11
>>> vpaddd zmm12, zmm15, zmm12
>>> vpaddd zmm13, zmm1, zmm13
>>> vpaddq zmm9, zmm9, zmm7 #zmm7=64
>>> vpaddq zmm10, zmm10, zmm7
>>> add rcx, -64 #decrement counter by 64
>>> jne .LBB0_3 # if rcx not equal to zero goto .lbbo_3
>>> # BB#4: # %middle.block
>>> # in Loop: Header=BB0_2
Depth=2
>>> vpaddd zmm0, zmm11, zmm8
>>> vpaddd zmm0, zmm12, zmm0
>>> vpaddd zmm0, zmm13, zmm0
>>> *vshufi64x2 zmm1, zmm0, zmm0, 14 # zmm1 = zmm0[4,5,6,7,0,1,0,1] ;
>>> please explain how shuffle instructions work here. i know of llvm
ir
>>> shuffle, but these assembly ones are difficult for me to
understand*
>>>
>>
>> You have to look at the size of the register being mentioned and the
>> number of elements in brackets. In this case the regsiter is 512-bits
and
>> the number of elements is 8. 512/8 is 64. So its a shuffle of a v8i64
>> vector. Then we read the element numbers from left to write just like
the
>> shuffle IR instruction.
>>
>> So element 0 of zmm1 gets the value of element 4 of zmm0. Element 1 of
>> zmm1 gets the value of element 5 of zmm5, etc.
>>
>>
>>> * vpaddd zmm0, zmm0, zmm1*
>>> * vshufi64x2 zmm1, zmm0, zmm0, 1 # zmm1 = zmm0[2,3,0,1,0,1,0,1]*
>>> * vpaddd zmm0, zmm0, zmm1*
>>> * vpshufd zmm1, zmm0, 238 # zmm1 >>>
zmm0[2,3,2,3,6,7,6,7,10,11,10,11,14,15,14,15]*
>>> * vpaddd zmm0, zmm0, zmm1*
>>> * vpshufd zmm1, zmm0, 229 # zmm1 >>>
zmm0[1,1,2,3,5,5,6,7,9,9,10,11,13,13,14,15]*
>>> vpaddd zmm0, zmm0, zmm1
>>> vmovd ebx, xmm0
>>> mov rax, r8
>>> xor r14d, r14d
>>> .p2align 4, 0x90
>>> .LBB0_5: # Parent Loop BB0_1
Depth=1
>>> # Parent Loop BB0_2
Depth=2
>>> # => This Inner Loop
Header:
>>> Depth=3
>>> lea r15, [rsi + r14]
>>> mov r12d, dword ptr [r15 + 4*r11 - 16000]
>>> imul r12d, dword ptr [rax - 16]
>>> mov ecx, dword ptr [r15 + 4*r11 - 12000]
>>> imul ecx, dword ptr [rax - 12]
>>> mov ebp, dword ptr [r15 + 4*r11 - 8000]
>>> imul ebp, dword ptr [rax - 8]
>>> add r12d, ebx
>>> add ecx, r12d
>>> add ebp, ecx
>>> mov ecx, dword ptr [r15 + 4*r11 - 4000]
>>> imul ecx, dword ptr [rax - 4]
>>> add ecx, ebp
>>> mov ebx, dword ptr [r15 + 4*r11]
>>> imul ebx, dword ptr [rax]
>>> add ebx, ecx
>>> add r14, 20000
>>> add rax, 20
>>> cmp r14, 160000
>>> jne .LBB0_5
>>> # BB#6: # %.loopexit
>>> # in Loop: Header=BB0_2
Depth=2
>>> add r10, rdx #rdx is c[][]
>>> mov dword ptr [r10 + 4*r11], ebx
>>> inc r11
>>> cmp r11, 1000
>>> jne .LBB0_2
>>> # BB#7: # in Loop: Header=BB0_1
Depth=1
>>> inc r9
>>> add r8, 4000
>>> cmp r9, 1000
>>> jne .LBB0_1
>>> # BB#8:
>>> pop rbx
>>> pop r12
>>> pop r14
>>> pop r15
>>> pop rbp
>>> ret
>>>
>>>
>>> Looking forward to your reply
>>>
>>> Thank You
>>>
>>>
>>>
>>> _______________________________________________
>>> LLVM Developers mailing list
>>> llvm-dev at lists.llvm.org
>>> http://lists.llvm.org/cgi-bin/mailman/listinfo/llvm-dev
>>>
>>>
>>
>
>
-------------- next part --------------
An HTML attachment was scrubbed...
URL:
<http://lists.llvm.org/pipermail/llvm-dev/attachments/20170701/79f39bee/attachment-0001.html>
Craig Topper via llvm-dev
2017-Jun-30 23:45 UTC
[llvm-dev] KNL Assembly Code for Matrix Multiplication
If you see a comment after an instruction that contains LCP in the address, the comment indicates what static value we loading from the constant pool. So after this instruction bits 63:0 will contain the value 8. Bits 127:64 will contain the value 9. Bits 192:128 will contain 10. And so on. The CP in LCP stands for Constant Pool. vmovdqa64 zmm22, zmmword ptr [rip + .LCPI0_0] # zmm22 [8,9,10,11,12,13,14,15] ~Craig On Fri, Jun 30, 2017 at 4:11 PM, hameeza ahmed <hahmed2305 at gmail.com> wrote:> Further, I need to understand it with putting actual values since it is > very confusing... > > vmovdqa64 zmm22, zmmword ptr [rip + .LCPI0_0] ; i am supposing this will > move 64 bit values from mentioned indexes though i still believe each value > is required to be 32 bit. Now the indexes are [8, 9, 10, 11, 12, 13, 14, > 15]. now when these indexes are added with rip it points to the value > actually present at these locations so zmm22 will contain values not > indexes. suppose [8]={1}, [9]={5}, [10]={4}...... so zmm22 will become > zmm22={1, 5, 4, 3, 8, 7, 6, 2}......these are those 64 bit values loaded > from memory indexes. > > vpbroadcastq zmm2, qword ptr [rip + .LCPI0_2]; here .LCPI0_2=4000 means > broadcast value at this index for eg this location contains 2 so > zmm2={2,2,2,2.....2}. > > vpmuludq zmm14, zmm10, zmm2 ; this step is value multiplication not > index, there seems no point in multiplying these values here since we > havent used A and B yet??? > > > > Please clarify my understanding about these initial steps; if these get > cleared then only i will be able to move forward..... > > > Thank You > > > > > > > > > > > > > > On Sat, Jul 1, 2017 at 3:47 AM, hameeza ahmed <hahmed2305 at gmail.com> > wrote: > >> >> ---------- Forwarded message ---------- >> From: hameeza ahmed <hahmed2305 at gmail.com> >> Date: Sat, Jul 1, 2017 at 3:46 AM >> Subject: Re: [llvm-dev] KNL Assembly Code for Matrix Multiplication >> To: Craig Topper <craig.topper at gmail.com> >> >> >> Thank You. >> >> in this step; >> vmovdqa64 zmm22, zmmword ptr [rip + .LCPI0_0] # zmm22 >> [8,9,10,11,12,13,14,15] >> the indexes are 64 bit but the element stored at these position is 32 bit >> since we are dealing with integers and ir also shows this. >> here we are loading 32 bit value from those 64 bit indexes which means >> zmm22 will hold values 32 bit from these 64 bit position so there is >> capacity of 16 32 bit elements then why all this?? >> >> this is mentioned in IR as >> >> %5 = getelementptr inbounds [1000 x i32], [1000 x i32]* %0, i64 >> %indvars.iv34, i64 %4 >> %6 = bitcast i32* %5 to <16 x i32>* >> %wide.load = load <16 x i32>, <16 x i32>* %6, align 4, !tbaa !1 >> >> >> here indvars are 64 bit values but the values loaded from these indexes >> (step 3) is 32 bit??? >> >> Please correct me. >> >> >> >> >> >> On Fri, Jun 30, 2017 at 8:59 PM, Craig Topper <craig.topper at gmail.com> >> wrote: >> >>> Some comments inline, I'll need to look more later. >>> >>> ~Craig >>> >>> On Fri, Jun 30, 2017 at 5:28 AM, hameeza ahmed via llvm-dev < >>> llvm-dev at lists.llvm.org> wrote: >>> >>>> Hello, I want some help in understanding knl intel assembly of matrix >>>> multiplication code. some of the things are not clear; >>>> >>>> here .c file: >>>> >>>> #include <stdio.h> >>>> #define N 1000 >>>> >>>> // This function multiplies A[][] and B[][], and stores >>>> // the result in C[][] >>>> void multiply(int A[][N], int B[][N], int C[][N]) >>>> { >>>> int i, j, k, r; >>>> for (i = 0; i < N; i++) >>>> { >>>> for (j = 0; j < N; j++) >>>> { >>>> r = 0; >>>> for (k = 0; k < N; k++) { >>>> r += A[i][k]*B[k][j];} >>>> C[i][j] = r; >>>> >>>> } >>>> >>>> } >>>> } >>>> >>>> here .s file: * the code that i want to ask is in red color.* >>>> >>>> .text >>>> .intel_syntax noprefix >>>> .file "matn_o3.ll" >>>> .section .rodata,"a", at progbits >>>> .p2align 6 >>>> .LCPI0_0: >>>> .quad 8 # 0x8 >>>> .quad 9 # 0x9 >>>> .quad 10 # 0xa >>>> .quad 11 # 0xb >>>> .quad 12 # 0xc >>>> .quad 13 # 0xd >>>> .quad 14 # 0xe >>>> .quad 15 # 0xf >>>> .LCPI0_1: >>>> .quad 0 # 0x0 >>>> .quad 1 # 0x1 >>>> .quad 2 # 0x2 >>>> .quad 3 # 0x3 >>>> .quad 4 # 0x4 >>>> .quad 5 # 0x5 >>>> .quad 6 # 0x6 >>>> .quad 7 # 0x7 >>>> .section .rodata.cst8,"aM", at progbits,8 >>>> .p2align 3 >>>> .LCPI0_2: >>>> .quad 4000 # 0xfa0 >>>> .LCPI0_3: >>>> .quad 64000 # 0xfa00 >>>> .LCPI0_4: >>>> .quad 128000 # 0x1f400 >>>> .LCPI0_5: >>>> .quad 192000 # 0x2ee00 >>>> .LCPI0_6: >>>> .quad 64 # 0x40 >>>> .text >>>> .globl multiply >>>> .p2align 4, 0x90 >>>> .type multiply, at function >>>> multiply: # @multiply >>>> .cfi_startproc >>>> # BB#0: >>>> push rbp >>>> .Lcfi0: >>>> .cfi_def_cfa_offset 16 >>>> push r15 >>>> .Lcfi1: >>>> .cfi_def_cfa_offset 24 >>>> push r14 >>>> .Lcfi2: >>>> .cfi_def_cfa_offset 32 >>>> push r12 >>>> .Lcfi3: >>>> .cfi_def_cfa_offset 40 >>>> push rbx >>>> .Lcfi4: >>>> .cfi_def_cfa_offset 48 >>>> .Lcfi5: >>>> .cfi_offset rbx, -48 >>>> .Lcfi6: >>>> .cfi_offset r12, -40 >>>> .Lcfi7: >>>> .cfi_offset r14, -32 >>>> .Lcfi8: >>>> .cfi_offset r15, -24 >>>> .Lcfi9: >>>> .cfi_offset rbp, -16 >>>> lea r8, [rdi + 3856] >>>> xor r9d, r9d >>>> vmovdqa64 zmm22, zmmword ptr [rip + .LCPI0_0] # zmm22 >>>> [8,9,10,11,12,13,14,15] >>>> vmovdqa64 zmm23, zmmword ptr [rip + .LCPI0_1] # zmm23 >>>> [0,1,2,3,4,5,6,7] >>>> vpbroadcastq zmm2, qword ptr [rip + .LCPI0_2] >>>> vpbroadcastq zmm3, rsi >>>> add rsi, 3856000 >>>> vpbroadcastq zmm4, qword ptr [rip + .LCPI0_3] >>>> vpbroadcastq zmm5, qword ptr [rip + .LCPI0_4] >>>> vpbroadcastq zmm6, qword ptr [rip + .LCPI0_5] >>>> kxnorw k1, k0, k0 >>>> kshiftrw k1, k1, 8 >>>> vpbroadcastq zmm7, qword ptr [rip + .LCPI0_6] >>>> .p2align 4, 0x90 >>>> .LBB0_1: # %.preheader26 >>>> # =>This Loop Header: Depth=1 >>>> # Child Loop BB0_2 Depth 2 >>>> # Child Loop BB0_3 Depth 3 >>>> # Child Loop BB0_5 Depth 3 >>>> xor r11d, r11d >>>> .p2align 4, 0x90 >>>> .LBB0_2: # %.preheader >>>> # Parent Loop BB0_1 Depth=1 >>>> # => This Loop Header: Depth=2 >>>> # Child Loop BB0_3 Depth 3 >>>> # Child Loop BB0_5 Depth 3 >>>> vpxord zmm8, zmm8, zmm8 >>>> mov ecx, 960 >>>> vmovdqa64 zmm9, zmm23 >>>> vmovdqa64 zmm10, zmm22 >>>> vpxord zmm11, zmm11, zmm11 >>>> vpxord zmm12, zmm12, zmm12 >>>> vpxord zmm13, zmm13, zmm13 >>>> .p2align 4, 0x90 >>>> .LBB0_3: # %vector.body >>>> # Parent Loop BB0_1 Depth=1 >>>> # Parent Loop BB0_2 Depth=2 >>>> # => This Inner Loop Header: >>>> Depth=3 >>>> # this bb will run 15 times >>>> vmovq rax, xmm9 >>>> imul r10, r9, 4000 >>>> lea rbx, [rdi + r10] >>>> *vpmuludq zmm14, zmm10, zmm2 ; this is BB for vector here we have >>>> to do gather for B due to arbitrary addresses so here >>>> zmm10=[8,9,10,11,12,13,14,15]. it means zmm10 contains 8 values present in >>>> these indexes? and zmm2=[4000, 4000,.....4000]. these are the indexes for B >>>> we need to multiple indexes with stride=4000. i know here these indexes are >>>> 64 bit but the values stored in these locations are 32 bits then the load >>>> using zmm10 index will give 8 elements of 32 bits present in these >>>> locations, so do the registers contain 8 elements of 32 bits present at >>>> specified indexes?? so after multiplication we get indexes for higher 8 >>>> elements of B i.e [3200,3600,40000,.......54000].* >>>> >>>> * vpsrlq zmm15, zmm10, 32 ; i dont understand the need for >>>> this step, please explain the purpose of all these steps. here vpsrlq will >>>> shift right zmm10 values by 256 bits (32*8)....zmmm10 initially=**[8,9,10,11,12,13,14,15]. >>>> it will now become [0,0,0,0,8,9,10,11]...Am I correct? Please explain me >>>> the purpose of this step.* >>>> * vpmuludq zmm15, zmm15, zmm2 ; similarly **dont understand the >>>> need for this step.* >>>> * vpsllq zmm15, zmm15, 32 ; **dont understand the need for this >>>> step* >>>> * vpaddq zmm14, zmm14, zmm3 ; * >>>> * vpaddq zmm14, zmm15, zmm14 ; **dont understand the need for this >>>> step* >>>> >>> >>> vpsrlq zmm15, zmm10, 32 shifts every 64-bit element in zmm10 right by 32 >>> bits. I believe this effectively taking every odd numbered 32-bit element >>> and moving them to the next lowest even numbered 32-bit element. >>> >>> vmuludq multiplies all even numbered 32-bit elements and creates 64-bit >>> results. >>> >>> The combination of the shifts, vpmuludq, and vpaddq is to multiply >>> 64-bit elements and create a 64-bit elements result. We don't have an >>> instruction for this so we have to multiply the low 32-bits of each element >>> and the high 32-bits of each element separately and add the results >>> together. Looks like we determined that the high 32-bits of one of the >>> inputs is all zeros so we skipped 1 of the multiplies and adds that would >>> normally be required for this operation. >>> >>> >>> >>>> * vpbroadcastq zmm15, r11 ; **r11 changes when loop variable j changes >>>> whats the need of this step?* >>>> * vpsllq zmm15, zmm15, 2 ; **dont understand the need for this step* >>>> * vpaddq zmm14, zmm14, zmm15 ; **dont understand the need for this >>>> step* >>>> * vpmuludq zmm16, zmm9, zmm2 ; **here same as before the lower 8 >>>> elements of B indexes are computed as Zmm16=[0,4000,8000,.......28000]* >>>> * vpsrlq zmm17, zmm9, 32 **; **dont understand the need for this >>>> step* >>>> * vpmuludq zmm17, zmm17, zmm2 **; **dont understand the need for this >>>> step* >>>> * vpsllq zmm17, zmm17, 32 **; **dont understand the need for this >>>> step* >>>> * vpaddq zmm16, zmm16, zmm3 * >>>> * vpaddq zmm16, zmm17, zmm16 **; **dont understand the need for this >>>> step* >>>> * vpaddq zmm15, zmm16, zmm15 **; **dont understand the need for this >>>> step* >>>> * vpaddq zmm16, zmm15, zmm4* >>>> * vpaddq zmm17, zmm14, zmm4* >>>> * vpaddq zmm18, zmm15, zmm5* >>>> * vpaddq zmm19, zmm14, zmm5* >>>> * vpaddq zmm20, zmm15, zmm6* >>>> * vpaddq zmm21, zmm14, zmm6* >>>> * kmovw k2, k1 **; **dont understand the need for this step* >>>> >>> >>> The gather instruction requires a mask of which elements to read. When >>> the gather completes, if there are no faults it will have written the mask >>> register to 0. So it needs to reloaded for each gather. >>> >>> >>>> * vpgatherqd ymm0 {k2}, zmmword ptr [zmm14] ; since zmm14 contains 8 >>>> indexes ( or values at these 8 indexes???) so it will load 8 elements not >>>> 16. here it should be zmm14**=[3200,3600,40000,.......54000]. but by >>>> the above computation these indexes are changes??* >>>> * kxnorw k2, k0, k0 **; **dont understand the need for this step* >>>> >>> * vpgatherqd ymm14 {k2}, zmmword ptr [zmm15] **; **here again issues >>>> with index zmm15. it should be **[0,4000,8000,.......28000] but its >>>> different due to above computation.* >>>> * vinserti64x4 zmm0, zmm14, ymm0, 1* >>>> * kmovw k2, k1* >>>> * vpgatherqd ymm14 {k2}, zmmword ptr [zmm17]* >>>> * kxnorw k2, k0, k0* >>>> * vpgatherqd ymm15 {k2}, zmmword ptr [zmm16]* >>>> * vinserti64x4 zmm14, zmm15, ymm14, 1* >>>> * kmovw k2, k1* >>>> * vpgatherqd ymm15 {k2}, zmmword ptr [zmm19]* >>>> * kxnorw k2, k0, k0* >>>> * vpgatherqd ymm16 {k2}, zmmword ptr [zmm18]* >>>> * vinserti64x4 zmm15, zmm16, ymm15, 1* >>>> * kmovw k2, k1* >>>> * vpgatherqd ymm1 {k2}, zmmword ptr [zmm21]* >>>> * kxnorw k2, k0, k0* >>>> * vpgatherqd ymm16 {k2}, zmmword ptr [zmm20]* >>>> * vinserti64x4 zmm1, zmm16, ymm1, 1* >>>> * vpmulld zmm0, zmm0, zmmword ptr [rbx + 4*rax]* >>>> vpmulld zmm14, zmm14, zmmword ptr [rbx + 4*rax + 64] >>>> vpmulld zmm15, zmm15, zmmword ptr [rbx + 4*rax + 128] >>>> vpmulld zmm1, zmm1, zmmword ptr [rbx + 4*rax + 192] >>>> vpaddd zmm8, zmm0, zmm8 >>>> vpaddd zmm11, zmm14, zmm11 >>>> vpaddd zmm12, zmm15, zmm12 >>>> vpaddd zmm13, zmm1, zmm13 >>>> vpaddq zmm9, zmm9, zmm7 #zmm7=64 >>>> vpaddq zmm10, zmm10, zmm7 >>>> add rcx, -64 #decrement counter by 64 >>>> jne .LBB0_3 # if rcx not equal to zero goto .lbbo_3 >>>> # BB#4: # %middle.block >>>> # in Loop: Header=BB0_2 >>>> Depth=2 >>>> vpaddd zmm0, zmm11, zmm8 >>>> vpaddd zmm0, zmm12, zmm0 >>>> vpaddd zmm0, zmm13, zmm0 >>>> *vshufi64x2 zmm1, zmm0, zmm0, 14 # zmm1 = zmm0[4,5,6,7,0,1,0,1] ; >>>> please explain how shuffle instructions work here. i know of llvm ir >>>> shuffle, but these assembly ones are difficult for me to understand* >>>> >>> >>> You have to look at the size of the register being mentioned and the >>> number of elements in brackets. In this case the regsiter is 512-bits and >>> the number of elements is 8. 512/8 is 64. So its a shuffle of a v8i64 >>> vector. Then we read the element numbers from left to write just like the >>> shuffle IR instruction. >>> >>> So element 0 of zmm1 gets the value of element 4 of zmm0. Element 1 of >>> zmm1 gets the value of element 5 of zmm5, etc. >>> >>> >>>> * vpaddd zmm0, zmm0, zmm1* >>>> * vshufi64x2 zmm1, zmm0, zmm0, 1 # zmm1 = zmm0[2,3,0,1,0,1,0,1]* >>>> * vpaddd zmm0, zmm0, zmm1* >>>> * vpshufd zmm1, zmm0, 238 # zmm1 >>>> zmm0[2,3,2,3,6,7,6,7,10,11,10,11,14,15,14,15]* >>>> * vpaddd zmm0, zmm0, zmm1* >>>> * vpshufd zmm1, zmm0, 229 # zmm1 >>>> zmm0[1,1,2,3,5,5,6,7,9,9,10,11,13,13,14,15]* >>>> vpaddd zmm0, zmm0, zmm1 >>>> vmovd ebx, xmm0 >>>> mov rax, r8 >>>> xor r14d, r14d >>>> .p2align 4, 0x90 >>>> .LBB0_5: # Parent Loop BB0_1 Depth=1 >>>> # Parent Loop BB0_2 Depth=2 >>>> # => This Inner Loop Header: >>>> Depth=3 >>>> lea r15, [rsi + r14] >>>> mov r12d, dword ptr [r15 + 4*r11 - 16000] >>>> imul r12d, dword ptr [rax - 16] >>>> mov ecx, dword ptr [r15 + 4*r11 - 12000] >>>> imul ecx, dword ptr [rax - 12] >>>> mov ebp, dword ptr [r15 + 4*r11 - 8000] >>>> imul ebp, dword ptr [rax - 8] >>>> add r12d, ebx >>>> add ecx, r12d >>>> add ebp, ecx >>>> mov ecx, dword ptr [r15 + 4*r11 - 4000] >>>> imul ecx, dword ptr [rax - 4] >>>> add ecx, ebp >>>> mov ebx, dword ptr [r15 + 4*r11] >>>> imul ebx, dword ptr [rax] >>>> add ebx, ecx >>>> add r14, 20000 >>>> add rax, 20 >>>> cmp r14, 160000 >>>> jne .LBB0_5 >>>> # BB#6: # %.loopexit >>>> # in Loop: Header=BB0_2 >>>> Depth=2 >>>> add r10, rdx #rdx is c[][] >>>> mov dword ptr [r10 + 4*r11], ebx >>>> inc r11 >>>> cmp r11, 1000 >>>> jne .LBB0_2 >>>> # BB#7: # in Loop: Header=BB0_1 >>>> Depth=1 >>>> inc r9 >>>> add r8, 4000 >>>> cmp r9, 1000 >>>> jne .LBB0_1 >>>> # BB#8: >>>> pop rbx >>>> pop r12 >>>> pop r14 >>>> pop r15 >>>> pop rbp >>>> ret >>>> >>>> >>>> Looking forward to your reply >>>> >>>> Thank You >>>> >>>> >>>> >>>> _______________________________________________ >>>> LLVM Developers mailing list >>>> llvm-dev at lists.llvm.org >>>> http://lists.llvm.org/cgi-bin/mailman/listinfo/llvm-dev >>>> >>>> >>> >> >> >-------------- next part -------------- An HTML attachment was scrubbed... URL: <http://lists.llvm.org/pipermail/llvm-dev/attachments/20170630/85a7135a/attachment.html>