Highland Statistics Ltd
2017-Jun-20 07:26 UTC
[R] New book: Spatial, Temporal and Spatial-Temporal Ecological Data Analysis with R-INLA
We are pleased to announce the following book: Spatial, Temporal and Spatial-Temporal Ecological Data Analysis with R-INLA Authors: Zuur, Ieno, Saveliev Book website: www.highstat.com Paperback or EBook can be order (exclusively) from www.highstat.com TOC: http://highstat.com/Books/BGS/SpatialTemp/Zuuretal2017_TOCOnline.pdf Summary: We explain how to apply linear regression models, generalised linear models (GLM), and generalised linear mixed-effects models (GLMM) to spatial, temporal, and spatial-temporal data. Outline In Chapter 2 we discuss an important topic: dependency. Ignoring this means that we have pseudoreplication. We present a series of examples and discuss how dependency can manifest itself. We briefly discuss frequentist tools that are available for the analysis of temporal and spatial data in Chapters 3 and 4, and we will conclude that their application is rather limited, especially if non-Gaussian distributions are required. We will therefore consider alternative models, but these require Bayesian techniques. In Chapter 5 we discuss linear mixed-effects models to analyse hierarchical (i.e. clustered or nested) data, and in Chapter 6 we outline how we add spatial and spatial-temporal dependency to regression models via spatial (and/or temporal) correlated random effects. In Chapter 7 we introduce Bayesian analysis, Markov chain Monte Carlo techniques (MCMC), and Integrated Nested Laplace Approximation (INLA). INLA allows us to apply models to spatial, temporal, or spatial-temporal data. In Chapters 8 through 16 we present a series of INLA examples. We start by applying linear regression and mixed-effects models in INLA (Chapters 8 and 9), followed by GLM examples in Chapter 10. In Chapters 11 through 13 we show how to apply GLM models on spatial data. In Chapter 14 we discuss time-series techniques and how to implement them in INLA. Finally, in Chapters 15 and 16 we analyse spatial-temporal models in INLA. -- Dr. Alain F. Zuur First author of: 1. Beginner's Guide to GAMM with R (2014). 2. Beginner's Guide to GLM and GLMM with R (2013). 3. Beginner's Guide to GAM with R (2012). 4. Zero Inflated Models and GLMM with R (2012). 5. A Beginner's Guide to R (2009). 6. Mixed effects models and extensions in ecology with R (2009). 7. Analysing Ecological Data (2007). Highland Statistics Ltd. 9 St Clair Wynd UK - AB41 6DZ Newburgh Tel: 0044 1358 788177 Email: highstat at highstat.com URL: www.highstat.com -- Dr. Alain F. Zuur Author of: 1. Beginner's Guide to Spatial, Temporal and Spatial-Temporal Ecological Data Analysis with R-INLA. (2017). 2. Beginner's Guide to Zero-Inflated Models with R (2016). 3. Beginner's Guide to Data Exploration and Visualisation with R (2015). 4. Beginner's Guide to GAMM with R (2014). 5. Beginner's Guide to GLM and GLMM with R (2013). 6. Beginner's Guide to GAM with R (2012). 7. Zero Inflated Models and GLMM with R (2012). 8. A Beginner's Guide to R (2009). 9. Mixed effects models and extensions in ecology with R (2009). 10. Analysing Ecological Data (2007). Highland Statistics Ltd. 9 St Clair Wynd UK - AB41 6DZ Newburgh Tel: 0044 1358 788177 Email: highstat at highstat.com URL: www.highstat.com [[alternative HTML version deleted]]
Possibly Parallel Threads
- Course in Lisbon: Introduction to Linear Mixed Effects Models and GLMM with R
- Intro GAM and GAMM course: Singapore
- New book: Beginner's Guide to Zero-Inflated Models with R
- Course: Introduction to zero inflated models and GLMM
- Banff Canada: Mixed modelling course