Hi list members, I'm doing some analysis about differences in behaviours between rural and urban birds and, after reading and searching in different sources, I have a lot of doubts about how I'm performing them. I would greatly appreciate any feedback from you. Here are my questions, models and results: Background I performed some behavioural test on individuals belonging to the same territory (breeding birds), some of them located in rural areas and others in urban ones. I have 7 variables describing different behaviours in 178 breeding birds, most of them sharing territories as they are mates. Some of these variables should be considered as censored data. My main questions are: 1) which is the relationship between these behaviours and 2) whether urban birds differ in these behaviours (means) and/or in the strength of their relationships compare with rural ones. ###################################################################### MODELS AND RESULTS QUESTION 1) which is the relationship between the behaviours measured: prior = list(R = list(V = diag(7), nu = 8), G = list(G1 = list(V = diag(7), nu = 8))) m1 <- MCMCglmm(fixed = cbind (var1, var2min, var2max, var3min, var3max, var4min, var4max, var5, var6min, var6max, var7) ~ trait - 1, random = ~ us(trait):nest, rcov = ~ us(trait):units, prior = prior, family =c("gaussian", "cengaussian", "cengaussian", "cengaussian", "poisson", "cengaussian", "poisson"), nitt = 60000, burnin = 1000, thin = 25, data = datos) I obtained the correlation between behaviours with the general formula: model$VCV[,"var1:var2.nest"]/sqrt(model$VCV[,"var1:var1.nest"]*model$VCV[,"var2:var2.nest"])) so that: cor(var2:var1): 0.379; 95%CI = 0.376 - 0.383 cor(var3:var1): 0.246; 95%CI = 0.242 - 0.249 cor(var4:var1): 0.150; 95%CI = 0.146 - 0.155 cor(var5:var1): -0.022; 95%CI = -0.027 - -0.017 cor(var6:var1): 0.171; 95%CI = 0.167 - 0.176 cor(var7:var1): 0.001; 95%CI = -0.004 - 0.006 cor(var3:var2): 0.364; 95%CI = 0.360 - 0.369 cor(var4:var2): 0.121; 95%CI = 0.115 - 0.127 cor(var5:var2): -0.037; 95%CI = -0.044 - -0.030 cor(var6:var2): 0.209; 95%CI = 0.203 - 0.215 cor(var7:var2): -0.031; 95%CI = -0.038 - -0.024 cor(var4:var3): 0.062; 95%CI = 0.056 - 0.068 cor(var5:var3): 0.037; 95%CI = 0.030 - 0.045 cor(var6:var3): 0.210; 95%CI = 0.204 - 0.216 cor(var7:var3): 0.028; 95%CI = 0.021 - 0.035 cor(var5:var4): -0.436; 95%CI = -0.442 - -0.429 cor(var6:var4): 0.133; 95%CI = 0.126 - 0.140 cor(var7:var4): -0.120; 95%CI = -0.128 - -0.111 cor(var6:var5): -0.160; 95%CI = -0.169 - -0.151 cor(var7:var5): 0.346; 95%CI = 0.336 - 0.357 cor(var7:var6): -0.371; 95%CI = -0.379 - -0.364 So my first response would be that yes, all my behavioural measures are correlated (with different strength or sign). Just to be sure: even if birds are nested within territories (nest), these correlations are at the individual level (within the individual), and nest is a random term because we replicate individuals within the same territory, but nothing about resemblance between mates. OK? ###################################################################### QUESTION 2) urban birds differ in mean or the strength of the relationship between these behaviours compare with rural ones. I include in models the term "habitat" which is a factor with 2 levels (urban or rural). Here I have some doubts, as I'm not sure how to do the model: m2a <- MCMCglmm(fixed = cbind(var1, var2min, var2max, var3min, var3max, var4min, var4max, var5, var6min, var6max, var7) ~ trait - 1 + habitat, random = ~ us(trait):nest, rcov = ~ us(trait):units, prior = prior,family = c("gaussian", "cengaussian", "cengaussian", "cengaussian", "poisson", "cengaussian", "poisson"), nitt = 60000, burnin = 1000, thin = 25, data = datos) m2b <- MCMCglmm(fixed = cbind(var1, var2min, var2max, var3min, var3max, var4min, var4max, var5, var6min, var6max, var7) ~ trait - 1 + trait:habitat, random = ~ us(trait):nest, rcov = ~ us(trait):units, prior = prior,family = c("gaussian", "cengaussian", "cengaussian", "cengaussian", "poisson", "cengaussian", "poisson"), nitt = 60000, burnin = 1000, thin = 25, data = datos) m2a, and m2b are different models, but I'm not sure which is their meanings: after reading, what I understood is that m2a test the hypothesis that the relationship between variables changes but in the same way between habitats, while in m2b the idea is that habitat type affect the relationship between variables differently. DIC(m2a): 1514.612 DIC(m2b): 1517.572 m2a is the best model, but m2b is close (∆DIC= 2.96), so should I conclude that the relationship between variables is similar in both habitat types? Then, I don't know how to obtain the correlations between the different behaviours using this model (m2b). I find a recomendation in the Rlist, something like this: m2c <- MCMCglmm(fixed = cbind(var1, var2min, var2max, var3min, var3max, var4min, var4max, var5, var6min, var6max, var7) ~ trait - 1 + trait:habitat,random = ~ us(trait:at.level(habitat, 1)):nest + us(trait:at.level(habitat, 2)):nest, rcov = ~ us(trait):units, prior = list(R = list(V = diag(7), nu = 8), G = list(G1 = list(V = diag(7), nu = 8), G2 = list(V = diag(7), nu = 8))), family = c("gaussian", "cengaussian", "cengaussian", "cengaussian", "poisson", "cengaussian", "poisson"), nitt = 60000, burnin = 1000, thin = 25, data = datos) summary(m2c) Iterations = 1001:59976 Thinning interval = 25 Sample size = 2360 DIC(m2c): 1566.367 G-structure: ~us(trait:at.level(habitat, 1)):nest post.mean l-95% CI u-95% CI eff.samp var1:at.level(habitat, 1):var1:at.level(habitat, 1).nest 0.136304 0.09799 0.17641 2360.00 var2:at.level(habitat, 1):var1:at.level(habitat, 1).nest 0.015494 -0.03910 0.06556 1774.69 var3:at.level(habitat, 1):var1:at.level(habitat, 1).nest 0.002703 -0.06701 0.07044 1596.13 var4:at.level(habitat, 1):var1:at.level(habitat, 1).nest 0.024925 -0.05294 0.11054 1532.04 var5:at.level(habitat, 1):var1:at.level(habitat, 1).nest -0.031660 -0.19513 0.12782 1915.77 var6:at.level(habitat, 1):var1:at.level(habitat, 1).nest 0.008893 -0.09836 0.11516 1174.13 var7:at.level(habitat, 1):var1:at.level(habitat, 1).nest -0.020421 -0.18110 0.14512 1425.96 var1:at.level(habitat, 1):var2:at.level(habitat, 1).nest 0.015494 -0.03910 0.06556 1774.69 var2:at.level(habitat, 1):var2:at.level(habitat, 1).nest 0.410275 0.26237 0.59275 934.78 var3:at.level(habitat, 1):var2:at.level(habitat, 1).nest 0.057976 -0.12494 0.23465 330.66 var4:at.level(habitat, 1):var2:at.level(habitat, 1).nest -0.003364 -0.22167 0.19782 772.17 var5:at.level(habitat, 1):var2:at.level(habitat, 1).nest -0.056700 -0.45976 0.39309 612.34 var6:at.level(habitat, 1):var2:at.level(habitat, 1).nest -0.021934 -0.30452 0.25433 371.81 var7:at.level(habitat, 1):var2:at.level(habitat, 1).nest -0.017623 -0.49615 0.39792 548.59 var1:at.level(habitat, 1):var3:at.level(habitat, 1).nest 0.002703 -0.06701 0.07044 1596.13 var2:at.level(habitat, 1):var3:at.level(habitat, 1).nest 0.057976 -0.12494 0.23465 330.66 var3:at.level(habitat, 1):var3:at.level(habitat, 1).nest 0.642849 0.34019 0.98322 305.33 var4:at.level(habitat, 1):var3:at.level(habitat, 1).nest -0.054583 -0.33766 0.21244 623.97 var5:at.level(habitat, 1):var3:at.level(habitat, 1).nest 0.108017 -0.45137 0.68393 513.78 var6:at.level(habitat, 1):var3:at.level(habitat, 1).nest -0.005969 -0.40265 0.35762 368.33 var7:at.level(habitat, 1):var3:at.level(habitat, 1).nest 0.047296 -0.54854 0.64387 425.52 var1:at.level(habitat, 1):var4:at.level(habitat, 1).nest 0.024925 -0.05294 0.11054 1532.04 var2:at.level(habitat, 1):var4:at.level(habitat, 1).nest -0.003364 -0.22167 0.19782 772.17 var3:at.level(habitat, 1):var4:at.level(habitat, 1).nest -0.054583 -0.33766 0.21244 623.97 var4:at.level(habitat, 1):var4:at.level(habitat, 1).nest 0.838939 0.33055 1.51471 356.01 var5:at.level(habitat, 1):var4:at.level(habitat, 1).nest -0.993110 -2.24249 -0.01864 263.03 var6:at.level(habitat, 1):var4:at.level(habitat, 1).nest 0.336994 -0.23357 1.00589 181.84 var7:at.level(habitat, 1):var4:at.level(habitat, 1).nest -0.735804 -2.00597 0.11626 165.63 var1:at.level(habitat, 1):var5:at.level(habitat, 1).nest -0.031660 -0.19513 0.12782 1915.77 var2:at.level(habitat, 1):var5:at.level(habitat, 1).nest -0.056700 -0.45976 0.39309 612.34 var3:at.level(habitat, 1):var5:at.level(habitat, 1).nest 0.108017 -0.45137 0.68393 513.78 var4:at.level(habitat, 1):var5:at.level(habitat, 1).nest -0.993110 -2.24249 -0.01864 263.03 var5:at.level(habitat, 1):var5:at.level(habitat, 1).nest 2.948040 0.50599 6.20484 213.50 var6:at.level(habitat, 1):var5:at.level(habitat, 1).nest -0.878025 -2.40912 0.36680 157.95 var7:at.level(habitat, 1):var5:at.level(habitat, 1).nest 1.928700 -0.45261 4.73825 105.74 var1:at.level(habitat, 1):var6:at.level(habitat, 1).nest 0.008893 -0.09836 0.11516 1174.13 var2:at.level(habitat, 1):var6:at.level(habitat, 1).nest -0.021934 -0.30452 0.25433 371.81 var3:at.level(habitat, 1):var6:at.level(habitat, 1).nest -0.005969 -0.40265 0.35762 368.33 var4:at.level(habitat, 1):var6:at.level(habitat, 1).nest 0.336994 -0.23357 1.00589 181.84 var5:at.level(habitat, 1):var6:at.level(habitat, 1).nest -0.878025 -2.40912 0.36680 157.95 var6:at.level(habitat, 1):var6:at.level(habitat, 1).nest 1.283158 0.40113 2.59803 124.27 var7:at.level(habitat, 1):var6:at.level(habitat, 1).nest -1.125402 -2.76629 0.06360 155.35 var1:at.level(habitat, 1):var7:at.level(habitat, 1).nest -0.020421 -0.18110 0.14512 1425.96 var2:at.level(habitat, 1):var7:at.level(habitat, 1).nest -0.017623 -0.49615 0.39792 548.59 var3:at.level(habitat, 1):var7:at.level(habitat, 1).nest 0.047296 -0.54854 0.64387 425.52 var4:at.level(habitat, 1):var7:at.level(habitat, 1).nest -0.735804 -2.00597 0.11626 165.63 var5:at.level(habitat, 1):var7:at.level(habitat, 1).nest 1.928700 -0.45261 4.73825 105.74 var6:at.level(habitat, 1):var7:at.level(habitat, 1).nest -1.125402 -2.76629 0.06360 155.35 var7:at.level(habitat, 1):var7:at.level(habitat, 1).nest 2.999515 0.57516 6.63337 80.53 ~us(trait:at.level(habitat, 2)):nest post.mean l-95% CI u-95% CI eff.samp var1:at.level(habitat, 2):var1:at.level(habitat, 2).nest 0.1656123 0.11786 0.22106 2360.0 var2:at.level(habitat, 2):var1:at.level(habitat, 2).nest 0.0334815 -0.02249 0.09568 1884.9 var3:at.level(habitat, 2):var1:at.level(habitat, 2).nest 0.0276997 -0.03648 0.10608 1703.1 var4:at.level(habitat, 2):var1:at.level(habitat, 2).nest 0.0094879 -0.06105 0.08723 1740.3 var5:at.level(habitat, 2):var1:at.level(habitat, 2).nest 0.0073708 -0.10499 0.12369 2054.9 var6:at.level(habitat, 2):var1:at.level(habitat, 2).nest 0.0210704 -0.06467 0.10751 1239.8 var7:at.level(habitat, 2):var1:at.level(habitat, 2).nest -0.0225721 -0.17452 0.12613 1311.9 var1:at.level(habitat, 2):var2:at.level(habitat, 2).nest 0.0334815 -0.02249 0.09568 1884.9 var2:at.level(habitat, 2):var2:at.level(habitat, 2).nest 0.3486283 0.22524 0.50847 1254.3 var3:at.level(habitat, 2):var2:at.level(habitat, 2).nest 0.0893576 -0.02938 0.22749 1103.3 var4:at.level(habitat, 2):var2:at.level(habitat, 2).nest 0.0170261 -0.12427 0.15590 1276.6 var5:at.level(habitat, 2):var2:at.level(habitat, 2).nest 0.0204992 -0.19159 0.26654 1316.1 var6:at.level(habitat, 2):var2:at.level(habitat, 2).nest 0.0539765 -0.09843 0.21485 1039.3 var7:at.level(habitat, 2):var2:at.level(habitat, 2).nest -0.0663682 -0.33668 0.22229 842.1 var1:at.level(habitat, 2):var3:at.level(habitat, 2).nest 0.0276997 -0.03648 0.10608 1703.1 var2:at.level(habitat, 2):var3:at.level(habitat, 2).nest 0.0893576 -0.02938 0.22749 1103.3 var3:at.level(habitat, 2):var3:at.level(habitat, 2).nest 0.4424986 0.24772 0.65768 958.6 var4:at.level(habitat, 2):var3:at.level(habitat, 2).nest 0.0209836 -0.15302 0.18846 1117.1 var5:at.level(habitat, 2):var3:at.level(habitat, 2).nest 0.0226774 -0.26750 0.30541 1367.4 var6:at.level(habitat, 2):var3:at.level(habitat, 2).nest 0.0731457 -0.12227 0.28489 883.4 var7:at.level(habitat, 2):var3:at.level(habitat, 2).nest -0.0251657 -0.36957 0.31977 755.0 var1:at.level(habitat, 2):var4:at.level(habitat, 2).nest 0.0094879 -0.06105 0.08723 1740.3 var2:at.level(habitat, 2):var4:at.level(habitat, 2).nest 0.0170261 -0.12427 0.15590 1276.6 var3:at.level(habitat, 2):var4:at.level(habitat, 2).nest 0.0209836 -0.15302 0.18846 1117.1 var4:at.level(habitat, 2):var4:at.level(habitat, 2).nest 0.4854582 0.23937 0.76309 1100.7 var5:at.level(habitat, 2):var4:at.level(habitat, 2).nest -0.1886537 -0.56073 0.10975 930.3 var6:at.level(habitat, 2):var4:at.level(habitat, 2).nest -0.0009642 -0.22502 0.21617 968.9 var7:at.level(habitat, 2):var4:at.level(habitat, 2).nest 0.0949310 -0.36272 0.50778 760.9 var1:at.level(habitat, 2):var5:at.level(habitat, 2).nest 0.0073708 -0.10499 0.12369 2054.9 var2:at.level(habitat, 2):var5:at.level(habitat, 2).nest 0.0204992 -0.19159 0.26654 1316.1 var3:at.level(habitat, 2):var5:at.level(habitat, 2).nest 0.0226774 -0.26750 0.30541 1367.4 var4:at.level(habitat, 2):var5:at.level(habitat, 2).nest -0.1886537 -0.56073 0.10975 930.3 var5:at.level(habitat, 2):var5:at.level(habitat, 2).nest 1.0214578 0.38161 1.84704 756.4 var6:at.level(habitat, 2):var5:at.level(habitat, 2).nest 0.0261338 -0.36384 0.41970 1040.3 var7:at.level(habitat, 2):var5:at.level(habitat, 2).nest 0.0375229 -0.70157 0.93888 704.7 var1:at.level(habitat, 2):var6:at.level(habitat, 2).nest 0.0210704 -0.06467 0.10751 1239.8 var2:at.level(habitat, 2):var6:at.level(habitat, 2).nest 0.0539765 -0.09843 0.21485 1039.3 var3:at.level(habitat, 2):var6:at.level(habitat, 2).nest 0.0731457 -0.12227 0.28489 883.4 var4:at.level(habitat, 2):var6:at.level(habitat, 2).nest -0.0009642 -0.22502 0.21617 968.9 var5:at.level(habitat, 2):var6:at.level(habitat, 2).nest 0.0261338 -0.36384 0.41970 1040.3 var6:at.level(habitat, 2):var6:at.level(habitat, 2).nest 0.6139191 0.28345 1.00710 784.2 var7:at.level(habitat, 2):var6:at.level(habitat, 2).nest -0.2443531 -0.82849 0.18576 816.9 var1:at.level(habitat, 2):var7:at.level(habitat, 2).nest -0.0225721 -0.17452 0.12613 1311.9 var2:at.level(habitat, 2):var7:at.level(habitat, 2).nest -0.0663682 -0.33668 0.22229 842.1 var3:at.level(habitat, 2):var7:at.level(habitat, 2).nest -0.0251657 -0.36957 0.31977 755.0 var4:at.level(habitat, 2):var7:at.level(habitat, 2).nest 0.0949310 -0.36272 0.50778 760.9 var5:at.level(habitat, 2):var7:at.level(habitat, 2).nest 0.0375229 -0.70157 0.93888 704.7 var6:at.level(habitat, 2):var7:at.level(habitat, 2).nest -0.2443531 -0.82849 0.18576 816.9 var7:at.level(habitat, 2):var7:at.level(habitat, 2).nest 1.6442687 0.44836 3.38122 288.9 R-structure: ~us(trait):units post.mean l-95% CI u-95% CI eff.samp var1:var1.units 0.062164 0.051459 0.07416 2360.0 var2:var1.units 0.006561 -0.008157 0.02402 1853.0 var3:var1.units 0.004655 -0.015026 0.02618 1677.4 var4:var1.units 0.009616 -0.024670 0.04814 1686.9 var5:var1.units -0.020257 -0.099360 0.06894 1409.0 var6:var1.units 0.009687 -0.024687 0.04640 2162.1 var7:var1.units -0.018389 -0.088376 0.04871 1997.5 var1:var2.units 0.006561 -0.008157 0.02402 1853.0 var2:var2.units 0.171884 0.133601 0.22208 1575.2 var3:var2.units 0.011132 -0.041338 0.06197 629.9 var4:var2.units -0.032961 -0.106789 0.03922 1463.1 var5:var2.units 0.029247 -0.141493 0.20121 1366.6 var6:var2.units -0.019018 -0.102393 0.06462 1130.2 var7:var2.units 0.025949 -0.131932 0.19386 1098.0 var1:var3.units 0.004655 -0.015026 0.02618 1677.4 var2:var3.units 0.011132 -0.041338 0.06197 629.9 var3:var3.units 0.297220 0.194598 0.41320 656.3 var4:var3.units -0.003164 -0.171143 0.15681 384.9 var5:var3.units 0.024245 -0.378239 0.40849 361.4 var6:var3.units 0.011216 -0.140303 0.19338 376.0 var7:var3.units 0.002151 -0.367842 0.33249 362.4 var1:var4.units 0.009616 -0.024670 0.04814 1686.9 var2:var4.units -0.032961 -0.106789 0.03922 1463.1 var3:var4.units -0.003164 -0.171143 0.15681 384.9 var4:var4.units 0.865977 0.555265 1.23769 691.4 var5:var4.units -1.616190 -2.369540 -0.97822 540.4 var6:var4.units 0.275559 0.043621 0.52288 780.3 var7:var4.units -0.620830 -1.223925 -0.11597 420.1 var1:var5.units -0.020257 -0.099360 0.06894 1409.0 var2:var5.units 0.029247 -0.141493 0.20121 1366.6 var3:var5.units 0.024245 -0.378239 0.40849 361.4 var4:var5.units -1.616190 -2.369540 -0.97822 540.4 var5:var5.units 4.603627 2.611698 6.65959 245.5 var6:var5.units -0.795076 -1.442050 -0.24446 545.7 var7:var5.units 1.954516 0.586883 3.49957 301.4 var1:var6.units 0.009687 -0.024687 0.04640 2162.1 var2:var6.units -0.019018 -0.102393 0.06462 1130.2 var3:var6.units 0.011216 -0.140303 0.19338 376.0 var4:var6.units 0.275559 0.043621 0.52288 780.3 var5:var6.units -0.795076 -1.442050 -0.24446 545.7 var6:var6.units 0.857967 0.522307 1.27700 458.0 var7:var6.units -1.067046 -1.813576 -0.52592 356.9 var1:var7.units -0.018389 -0.088376 0.04871 1997.5 var2:var7.units 0.025949 -0.131932 0.19386 1098.0 var3:var7.units 0.002151 -0.367842 0.33249 362.4 var4:var7.units -0.620830 -1.223925 -0.11597 420.1 var5:var7.units 1.954516 0.586883 3.49957 301.4 var6:var7.units -1.067046 -1.813576 -0.52592 356.9 var7:var7.units 3.018702 1.379693 5.09078 205.3 Location effects: cbind(var1, var2, logcaprmax, var3, logtcaemax, var4, logzorromax, var5, var6, loghalconmax, var7) ~ trait - 1 + trait:habitat post.mean l-95% CI u-95% CI eff.samp pMCMC traitvar1 1.68859 1.59946 1.76748 2360.0 < 4e-04 *** traitvar2 1.11222 0.94128 1.27189 1142.8 < 4e-04 *** traitvar3 1.30170 1.06826 1.59399 290.6 < 4e-04 *** traitvar4 1.26373 0.87937 1.62822 294.9 < 4e-04 *** traitvar5 -0.18299 -0.97919 0.56381 353.9 0.66441 traitvar6 1.48153 0.89085 2.01253 120.3 < 4e-04 *** traitvar7 -1.08708 -2.03436 -0.19270 127.1 0.01949 * traitvar1:habitat1 -0.48558 -0.60980 -0.36445 1922.9 < 4e-04 *** traitvar2:habitat1 -0.66787 -0.89365 -0.43531 1141.6 < 4e-04 *** traitvar3:habitat1 -0.48361 -0.82642 -0.15277 437.0 0.00847 ** traitvar4:habitat1 -0.29592 -0.79364 0.16455 401.0 0.22797 traitvar5:habitat1 0.06428 -0.91838 1.02105 500.2 0.90254 traitvar6:habitat1 -0.55078 -1.21994 0.10046 175.9 0.10000 . traitvar7:habitat1 -0.44890 -1.67698 0.75958 189.2 0.45932 --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 and correlations for the variables for the two levels of habitat are: habitat = RURAL var2:var1: 0.06581789; 95% CI = 0.06133871 - 0.07029706 var3:var1: 0.008656465; 95% CI = 0.00392139 - 0.01339154 var4:var1: 0.07288664; 95% CI = 0.06811906 - 0.07765422 var5:var1: -0.04830374; 95% CI = -0.05330634 - -0.04330114 var6:var1: 0.02026321; 95% CI = 0.01521869 - 0.02530773 var7:var1: -0.03021775; 95% CI = -0.03528822 - -0.02514727 var3:var2: 0.1111226; 95% CI = 0.1044198 - 0.1178254 var4:var2: -0.004587257; 95% CI = -0.01146466 - 0.002290146 var5:var2: -0.05334263; 95% CI = -0.06069082 - -0.04599444 var6:var2: -0.02931499; 95% CI = -0.03688508 - -0.0217449 var7:var2: -0.01759684; 95% CI = -0.02531301 - -0.00988067 var4:var3: -0.07251074; 95% CI = -0.07990936 - -0.06511211 var5:var3: 0.07728087; 95% CI = 0.06903799 - 0.08552375 var6:var3: -0.006868517; 95% CI = -0.01497649 - 0.001239459 var7:var3: 0.03703707; 95% CI = 0.02839657 - 0.04567758 var5:var4: -0.5945241; 95% CI = -0.601466 - -0.5875823 var6:var4: 0.2954133; 95% CI = 0.2859855 - 0.3048411 var7:var4: -0.43075; 95% CI = -0.4396149 - -0.421885 var4:var5: -0.5945241; 95% CI = -0.601466 - -0.5875823 var6:var5: -0.4162762; 95% CI = -0.4261684-0.406384 var7:var5: 0.6000609; 95% CI = 0.590975 - 0.6091469 var7:var6: -0.5416963; 95% CI = -0.5498123 - -0.5335803 habitat = URBAN var2:var1: 0.1381003; 95% CI = 0.1332987 - 0.1429019 var3:var1: 0.1009115; 95% CI = 0.09578722 - 0.1060357 var4:var1: 0.03348612; 95% CI = 0.02817647 - 0.03879578 var5:var1: 0.0186588; 95% CI = 0.01314655 - 0.02417105 var6:var1: 0.06562708; 95% CI = 0.06023977 - 0.07101439 var7:var1: -0.04184128; 95% CI = -0.04743616 - -0.0362464 var3:var2: 0.2239385; 95% CI = 0.2178998 - 0.2299772 var4:var2: 0.04107495; 95% CI = 0.03427635 - 0.04787355 var5:var2: 0.03300118; 95% CI = 0.02560607 - 0.04039628 var6:var2: 0.1144631; 95% CI = 0.1079228 - 0.1210033 var7:var2: -0.08634689; 95% CI = -0.09352826 - -0.07916552 var4:var3: 0.04332442; 95% CI = 0.03626806 - 0.05038079 var5:var3: 0.03267068; 95% CI = 0.02472427 - 0.04061708 var6:var3: 0.1357245; 95% CI = 0.1285366 - 0.1429123 var7:var3: -0.03101644; 95% CI = -0.03889608 - -0.0231368 var5:var4: -0.2505957; 95% CI = -0.2585397 - -0.2426517 var6:var4: -0.002795438; 95% CI = -0.01065961 - 0.005068738 var7:var4: 0.1007233; 95% CI = 0.09204078 - 0.1094059 var4:var5: -0.2505957; 95% CI = -0.2585397 - -0.2426517 var6:var5: 0.03341757; 95% CI = 0.02415877 - 0.04267638 var7:var5: 0.02453784; 95% CI = 0.01333783 - 0.03573786 var7:var6: -0.2279325; 95% CI = -0.2364717 - -0.2193934 However, the DIC of this model is the worst! My main question regarding this part of the analysis is how can I know that habitat significantly affect the correlation between behaviours and which are the mean values observed for each behaviour in each habitat type. For the first part of the question, DIC of the m2c model (1566.367) is higher than the DIC of m1 model (without habitat effect) and m2 (with "trait -1 + habitat" as fixed effect), but I know that DIC is not equivalent to AIC, so I'm not sure how much I should trust on it... I know it's too much, but I would greatly appreciate some feedback from you. As you can see, my statistical baggage is low and I'm trying to fix that with manuals and forum posts which sometimes can be very confusing. Cheers, Martina Dra. Martina Carrete Dpt Physical, Chemical and Natural Systems Universidad Pablo de Olavide, Ctra. Utrera km 1 41013, Sevilla [[alternative HTML version deleted]]