Hello,
I'm trying to fit a sine curve over successive temperature readings (i.e.
minimum and maximum temperature) over several days and for many locations. The
code below shows a hypothetical example of 5000 locations with 7 days of
temperature data. Not very efficient when you have many more locations and days.
The linear interpolation takes 0.7 seconds, and the sine interpolations take 2
to 4 seconds depending on the approach.
Any ideas on how to speed this up? Thanks in advance.
Ariel
### R Code ######
# 1- Prepare data fake data
days<- 7
n <- 5000*days
tmin <- matrix(rnorm(n, mean=0) , ncol=days, nrow=5000)
tmax <- matrix(rnorm(n, mean=10), ncol=days, nrow=5000)
m <- matrix(NA, ncol=days*2, nrow=5000)
m[,seq(1,ncol(m),2)] <- tmin
m[,seq(2,ncol(m)+1,2)]<- tmax
# check first row
plot(1:ncol(m), m[1,], type="l")
# 2 -linear interpolation: 0.66 seconds
xout <- seq(0,ncol(m),0.25/24*2)[-1] # time step = 0.25 hours or 15 minutes
system.time( m1 <- t(apply(m,1, function(y) approx(x=1:ncol(m), y=y,
xout=xout, method="linear")$y)) )
# Check first row
plot(1:ncol(m), m[1,], type="l")
points(xout, m1[1,], col="red", cex=1)
# 3- sine interpolation
sine.approx1 <- function(index, tmin, tmax) {
b <- (2*pi)/24 # period = 24 hours
c <- pi/2 # horizontal shift
xout <- seq(0,24,0.25)[-1]
yhat <- apply(cbind(tmin[index,],tmax[index,]), 1, function(z) diff(z)/2
* sin(b*xout-c) + mean(z))
#yhat <- yhat[-nrow(yhat),]
yhat <- c(yhat)
#plot(yhat, type="l")
}
sine.approx2 <- function(index, tmin, tmax) {
b <- (2*pi)/24 # period = 24 hours
c <- pi/2 # horizontal shift
xout1 <- seq(0 ,12,0.25)
xout2 <- seq(12,24,0.25)[-1]
xout2 <- xout2[-length(xout2)]
yhat1 <- apply(cbind(tmin[index,] ,tmax[index,]
), 1, function(z) diff(z)/2 * sin(b*xout1-c) + mean(z))
yhat2 <-
apply(cbind(tmax[index,][-length(tmax[index,])],tmin[index,][-1]), 1,
function(z) diff(z)/2 * sin(b*xout2+c) + mean(z))
yhat2 <- cbind(yhat2,NA)
yhat3 <- rbind(yhat1,yhat2)
#yhat3 <- yhat3[-nrow(yhat3),]
yhat3 <- c(yhat3)
yhat <- yhat3
#plot(c(yhat1))
#plot(c(yhat2))
#plot(yhat, type="l")
}
# Single sine: 2.23 seconds
system.time( m2 <- t(sapply(1:nrow(m), function(i) sine.approx1(i,
tmin=tmin, tmax=tmax))) )
# Double sine: 4.03 seconds
system.time( m3 <- t(sapply(1:nrow(m), function(i) sine.approx2(i,
tmin=tmin, tmax=tmax))) )
# take a look at approach 1
plot(seq(-1,ncol(m)-1,1)[-1], m[1,], type="l")
points(xout, m2[1,], col="red", cex=1)
# take a look at approach 2
plot(seq(-1,ncol(m)-1,1)[-1], m[1,], type="l")
points(xout, m3[1,], col="blue", cex=1)
---
Ariel Ortiz-Bobea
Fellow
Resources for the Future
1616 P Street, N.W.
Washington, DC 20036
202-328-5173
[[alternative HTML version deleted]]
You can try this: http://max2.ese.u-psud.fr/epc/conservation/Girondot/Publications/Blog_r/Entrees/2013/6/4_GLM_with_periodic_(annual)_transformation_of_factor.html Sincerely, Marc Le 13/05/2014 05:42, Ortiz-Bobea, Ariel a ?crit :> Hello, > > I'm trying to fit a sine curve over successive temperature readings (i.e. minimum and maximum temperature) over several days and for many locations. The code below shows a hypothetical example of 5000 locations with 7 days of temperature data. Not very efficient when you have many more locations and days. > > The linear interpolation takes 0.7 seconds, and the sine interpolations take 2 to 4 seconds depending on the approach. > > Any ideas on how to speed this up? Thanks in advance. > > Ariel > > ### R Code ###### > > # 1- Prepare data fake data > days<- 7 > n <- 5000*days > tmin <- matrix(rnorm(n, mean=0) , ncol=days, nrow=5000) > tmax <- matrix(rnorm(n, mean=10), ncol=days, nrow=5000) > m <- matrix(NA, ncol=days*2, nrow=5000) > m[,seq(1,ncol(m),2)] <- tmin > m[,seq(2,ncol(m)+1,2)]<- tmax > # check first row > plot(1:ncol(m), m[1,], type="l") > > # 2 -linear interpolation: 0.66 seconds > xout <- seq(0,ncol(m),0.25/24*2)[-1] # time step = 0.25 hours or 15 minutes > system.time( m1 <- t(apply(m,1, function(y) approx(x=1:ncol(m), y=y, xout=xout, method="linear")$y)) ) > # Check first row > plot(1:ncol(m), m[1,], type="l") > points(xout, m1[1,], col="red", cex=1) > > > # 3- sine interpolation > sine.approx1 <- function(index, tmin, tmax) { > b <- (2*pi)/24 # period = 24 hours > c <- pi/2 # horizontal shift > xout <- seq(0,24,0.25)[-1] > yhat <- apply(cbind(tmin[index,],tmax[index,]), 1, function(z) diff(z)/2 * sin(b*xout-c) + mean(z)) > #yhat <- yhat[-nrow(yhat),] > yhat <- c(yhat) > #plot(yhat, type="l") > } > sine.approx2 <- function(index, tmin, tmax) { > b <- (2*pi)/24 # period = 24 hours > c <- pi/2 # horizontal shift > xout1 <- seq(0 ,12,0.25) > xout2 <- seq(12,24,0.25)[-1] > xout2 <- xout2[-length(xout2)] > yhat1 <- apply(cbind(tmin[index,] ,tmax[index,] ), 1, function(z) diff(z)/2 * sin(b*xout1-c) + mean(z)) > yhat2 <- apply(cbind(tmax[index,][-length(tmax[index,])],tmin[index,][-1]), 1, function(z) diff(z)/2 * sin(b*xout2+c) + mean(z)) > yhat2 <- cbind(yhat2,NA) > yhat3 <- rbind(yhat1,yhat2) > #yhat3 <- yhat3[-nrow(yhat3),] > yhat3 <- c(yhat3) > yhat <- yhat3 > #plot(c(yhat1)) > #plot(c(yhat2)) > #plot(yhat, type="l") > } > > # Single sine: 2.23 seconds > system.time( m2 <- t(sapply(1:nrow(m), function(i) sine.approx1(i, tmin=tmin, tmax=tmax))) ) > > # Double sine: 4.03 seconds > system.time( m3 <- t(sapply(1:nrow(m), function(i) sine.approx2(i, tmin=tmin, tmax=tmax))) ) > > # take a look at approach 1 > plot(seq(-1,ncol(m)-1,1)[-1], m[1,], type="l") > points(xout, m2[1,], col="red", cex=1) > > # take a look at approach 2 > plot(seq(-1,ncol(m)-1,1)[-1], m[1,], type="l") > points(xout, m3[1,], col="blue", cex=1) > > > --- > Ariel Ortiz-Bobea > Fellow > Resources for the Future > 1616 P Street, N.W. > Washington, DC 20036 > 202-328-5173 > > > [[alternative HTML version deleted]] > > ______________________________________________ > R-help at r-project.org mailing list > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide http://www.R-project.org/posting-guide.html > and provide commented, minimal, self-contained, reproducible code. >
Hi Why not use functional data analysis. There is an R package called fda to help you. See http://www.psych.mcgill.ca/misc/fda/ex-weather-a1.html for an example exploring temperature from different locations. Yours sincerely / Med venlig hilsen Frede Aakmann T?gersen Specialist, M.Sc., Ph.D. Plant Performance & Modeling Technology & Service Solutions T +45 9730 5135 M +45 2547 6050 frtog at vestas.com http://www.vestas.com Company reg. name: Vestas Wind Systems A/S This e-mail is subject to our e-mail disclaimer statement. Please refer to www.vestas.com/legal/notice If you have received this e-mail in error please contact the sender.> -----Original Message----- > From: r-help-bounces at r-project.org [mailto:r-help-bounces at r-project.org] > On Behalf Of Ortiz-Bobea, Ariel > Sent: 13. maj 2014 05:42 > To: r-help at r-project.org > Subject: [R] efficient sine interpolation > > Hello, > > I'm trying to fit a sine curve over successive temperature readings (i.e. > minimum and maximum temperature) over several days and for many > locations. The code below shows a hypothetical example of 5000 locations > with 7 days of temperature data. Not very efficient when you have many > more locations and days. > > The linear interpolation takes 0.7 seconds, and the sine interpolations take 2 > to 4 seconds depending on the approach. > > Any ideas on how to speed this up? Thanks in advance. > > Ariel > > ### R Code ###### > > # 1- Prepare data fake data > days<- 7 > n <- 5000*days > tmin <- matrix(rnorm(n, mean=0) , ncol=days, nrow=5000) > tmax <- matrix(rnorm(n, mean=10), ncol=days, nrow=5000) > m <- matrix(NA, ncol=days*2, nrow=5000) > m[,seq(1,ncol(m),2)] <- tmin > m[,seq(2,ncol(m)+1,2)]<- tmax > # check first row > plot(1:ncol(m), m[1,], type="l") > > # 2 -linear interpolation: 0.66 seconds > xout <- seq(0,ncol(m),0.25/24*2)[-1] # time step = 0.25 hours or 15 minutes > system.time( m1 <- t(apply(m,1, function(y) approx(x=1:ncol(m), y=y, > xout=xout, method="linear")$y)) ) > # Check first row > plot(1:ncol(m), m[1,], type="l") > points(xout, m1[1,], col="red", cex=1) > > > # 3- sine interpolation > sine.approx1 <- function(index, tmin, tmax) { > b <- (2*pi)/24 # period = 24 hours > c <- pi/2 # horizontal shift > xout <- seq(0,24,0.25)[-1] > yhat <- apply(cbind(tmin[index,],tmax[index,]), 1, function(z) diff(z)/2 * > sin(b*xout-c) + mean(z)) > #yhat <- yhat[-nrow(yhat),] > yhat <- c(yhat) > #plot(yhat, type="l") > } > sine.approx2 <- function(index, tmin, tmax) { > b <- (2*pi)/24 # period = 24 hours > c <- pi/2 # horizontal shift > xout1 <- seq(0 ,12,0.25) > xout2 <- seq(12,24,0.25)[-1] > xout2 <- xout2[-length(xout2)] > yhat1 <- apply(cbind(tmin[index,] ,tmax[index,] ), 1, > function(z) diff(z)/2 * sin(b*xout1-c) + mean(z)) > yhat2 <- apply(cbind(tmax[index,][-length(tmax[index,])],tmin[index,][- > 1]), 1, function(z) diff(z)/2 * sin(b*xout2+c) + mean(z)) > yhat2 <- cbind(yhat2,NA) > yhat3 <- rbind(yhat1,yhat2) > #yhat3 <- yhat3[-nrow(yhat3),] > yhat3 <- c(yhat3) > yhat <- yhat3 > #plot(c(yhat1)) > #plot(c(yhat2)) > #plot(yhat, type="l") > } > > # Single sine: 2.23 seconds > system.time( m2 <- t(sapply(1:nrow(m), function(i) sine.approx1(i, > tmin=tmin, tmax=tmax))) ) > > # Double sine: 4.03 seconds > system.time( m3 <- t(sapply(1:nrow(m), function(i) sine.approx2(i, > tmin=tmin, tmax=tmax))) ) > > # take a look at approach 1 > plot(seq(-1,ncol(m)-1,1)[-1], m[1,], type="l") > points(xout, m2[1,], col="red", cex=1) > > # take a look at approach 2 > plot(seq(-1,ncol(m)-1,1)[-1], m[1,], type="l") > points(xout, m3[1,], col="blue", cex=1) > > > --- > Ariel Ortiz-Bobea > Fellow > Resources for the Future > 1616 P Street, N.W. > Washington, DC 20036 > 202-328-5173 > > > [[alternative HTML version deleted]] > > ______________________________________________ > R-help at r-project.org mailing list > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide http://www.R-project.org/posting- > guide.html > and provide commented, minimal, self-contained, reproducible code.
Not sure this approach yields meaningful data, but as a demonstration of
vectorization I got a factor of 10 speedup.
sine.approx3 <- function( tmin, tmax ) {
B <- (2*pi)/24 # period = 24 hours
C <- pi/2 # horizontal shift
tmin <- t( tmin )
tmax <- t( tmax )
idx <- seq.int( 24 * 4 * nrow( tmax ) - 12 * 4 )
xout <- ( idx - 1 ) * 0.25
cycles <- sin( B * xout - C )
mag <- matrix( NA, ncol=ncol( tmax ), nrow=length( idx ) )
idxup <- 2 * seq.int( nrow( tmax ) ) - 1
idxdn <- idxup[ -1 ] - 1
idxups <- rep( seq.int( nrow( tmax ) ), each=48 )
idxdns <- rep( seq.int( nrow( tmax ) - 1 ), each=48 )
idxupm <- c( outer( 1:48, 48*( idxup - 1 ), FUN="+" ) )
idxdnm <- c( outer( 1:48, 48*( idxdn - 1 ), FUN="+" ) )
mag[ idxupm, ] <- ( tmax - tmin )[ idxups, ] / 2
mag[ idxdnm, ] <- ( tmax[ -nrow( tmax ), ]
- tmin[ -1, ] )[ idxdns, ] / 2
mag <- mag * rep( cycles, times=ncol( mag ) )
mag[ idxupm, ] <- mag[ idxupm, ] + ( tmax + tmin )[ idxups, ] / 2
mag[ idxdnm, ] <- mag[ idxdnm, ] + ( tmax[ -nrow( tmax ), ]
+ tmin[ -1, ] )[ idxdns, ] / 2
t( mag )
}
On Tue, 13 May 2014, Ortiz-Bobea, Ariel wrote:
> Hello,
>
> I'm trying to fit a sine curve over successive temperature readings
(i.e. minimum and maximum temperature) over several days and for many locations.
The code below shows a hypothetical example of 5000 locations with 7 days of
temperature data. Not very efficient when you have many more locations and days.
>
> The linear interpolation takes 0.7 seconds, and the sine interpolations
take 2 to 4 seconds depending on the approach.
>
> Any ideas on how to speed this up? Thanks in advance.
>
> Ariel
>
> ### R Code ######
>
> # 1- Prepare data fake data
> days<- 7
> n <- 5000*days
> tmin <- matrix(rnorm(n, mean=0) , ncol=days, nrow=5000)
> tmax <- matrix(rnorm(n, mean=10), ncol=days, nrow=5000)
> m <- matrix(NA, ncol=days*2, nrow=5000)
> m[,seq(1,ncol(m),2)] <- tmin
> m[,seq(2,ncol(m)+1,2)]<- tmax
> # check first row
> plot(1:ncol(m), m[1,], type="l")
>
> # 2 -linear interpolation: 0.66 seconds
> xout <- seq(0,ncol(m),0.25/24*2)[-1] # time step = 0.25 hours or 15
minutes
> system.time( m1 <- t(apply(m,1, function(y) approx(x=1:ncol(m), y=y,
xout=xout, method="linear")$y)) )
> # Check first row
> plot(1:ncol(m), m[1,], type="l")
> points(xout, m1[1,], col="red", cex=1)
>
>
> # 3- sine interpolation
> sine.approx1 <- function(index, tmin, tmax) {
> b <- (2*pi)/24 # period = 24 hours
> c <- pi/2 # horizontal shift
> xout <- seq(0,24,0.25)[-1]
> yhat <- apply(cbind(tmin[index,],tmax[index,]), 1, function(z)
diff(z)/2 * sin(b*xout-c) + mean(z))
> #yhat <- yhat[-nrow(yhat),]
> yhat <- c(yhat)
> #plot(yhat, type="l")
> }
> sine.approx2 <- function(index, tmin, tmax) {
> b <- (2*pi)/24 # period = 24 hours
> c <- pi/2 # horizontal shift
> xout1 <- seq(0 ,12,0.25)
> xout2 <- seq(12,24,0.25)[-1]
> xout2 <- xout2[-length(xout2)]
> yhat1 <- apply(cbind(tmin[index,] ,tmax[index,]
), 1, function(z) diff(z)/2 * sin(b*xout1-c) + mean(z))
> yhat2 <-
apply(cbind(tmax[index,][-length(tmax[index,])],tmin[index,][-1]), 1,
function(z) diff(z)/2 * sin(b*xout2+c) + mean(z))
> yhat2 <- cbind(yhat2,NA)
> yhat3 <- rbind(yhat1,yhat2)
> #yhat3 <- yhat3[-nrow(yhat3),]
> yhat3 <- c(yhat3)
> yhat <- yhat3
> #plot(c(yhat1))
> #plot(c(yhat2))
> #plot(yhat, type="l")
> }
>
> # Single sine: 2.23 seconds
> system.time( m2 <- t(sapply(1:nrow(m), function(i) sine.approx1(i,
tmin=tmin, tmax=tmax))) )
>
> # Double sine: 4.03 seconds
> system.time( m3 <- t(sapply(1:nrow(m), function(i) sine.approx2(i,
tmin=tmin, tmax=tmax))) )
>
> # take a look at approach 1
> plot(seq(-1,ncol(m)-1,1)[-1], m[1,], type="l")
> points(xout, m2[1,], col="red", cex=1)
>
> # take a look at approach 2
> plot(seq(-1,ncol(m)-1,1)[-1], m[1,], type="l")
> points(xout, m3[1,], col="blue", cex=1)
>
>
> ---
> Ariel Ortiz-Bobea
> Fellow
> Resources for the Future
> 1616 P Street, N.W.
> Washington, DC 20036
> 202-328-5173
>
>
> [[alternative HTML version deleted]]
>
> ______________________________________________
> R-help at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide
http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.
>
---------------------------------------------------------------------------
Jeff Newmiller The ..... ..... Go Live...
DCN:<jdnewmil at dcn.davis.ca.us> Basics: ##.#. ##.#. Live
Go...
Live: OO#.. Dead: OO#.. Playing
Research Engineer (Solar/Batteries O.O#. #.O#. with
/Software/Embedded Controllers) .OO#. .OO#. rocks...1k