Benedetta Cesqui
2013-Nov-25 10:13 UTC
lmer specification for random effects: contradictory reults
Hi All,
I was wondering if someone could help me to solve this issue with lmer.
In order to understand the best mixed effects model to fit my data, I
compared the following options according to the procedures specified in many
papers (i.e. Baayen
<http://www.google.it/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CDsQFjAA
&url=http%3A%2F%2Fwww.ualberta.ca%2F~baayen%2Fpublications%2FbaayenDavidsonB
ates.pdf&ei=FhqTUoXuJKKV7Abds4GYBA&usg=AFQjCNFst7GT7mBX7w9lXItJTtELJSKWJg&si
g2=KGA5MHxOvEGwDxf-Gcqi6g&bvm> R.H. et al 2008)
Here, dT_purs is the response variable, T and Z are the fixed effects, and
subject is the random effect. Random and fixed effects are crossed.:
mod0 <- lmer(dT_purs ~ T + Z + (1|subject), data = x)
mod1 <- lmer(dT_purs ~ T + Z + (1 +tempo| subject), data = x)
mod2 <- lmer(dT_purs ~ T + Z + (1 +tempo| subject) + (1+ Z| subject), data x)
mod3 <- lmer(dT_purs ~ T * Z + (1 +tempo| subject) + (1+ Z| subject), data x)
mod4 <- lmer(dT_purs ~ T * Z + (1| subject), data = x)
anova(mod0, mod1,mod2, mod3, mod4)
Data: x
Models:
mod0: dT_purs ~ T + Z + (1 | subject)
mod4: dT_purs ~ T * Z + (1 | subject )
mod1: dT_purs ~ T + Z + (1 + T| subject)
mod2: dT_purs ~ T + Z + (1 + T| subject ) + (1 + Z | subject)
mod3: dT_purs ~ T * Z + (1 + T| subject) + (1 + Z | subject)
Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
mod0 5 -689.81 -669.46 349.91 -699.81
mod4 6 -689.57 -665.14 350.78 -701.57 1.7532 1 0.185473
mod1 7 -689.12 -660.62 351.56 -703.12 1.5504 1 0.213070
mod2 10 -695.67 -654.97 357.84 -715.67 12.5563 3 0.005701 **
mod3 11 -695.83 -651.05 358.92 -717.83 2.1580 1 0.141825
---
Signif. codes: 0 ''***'' 0.001 ''**'' 0.01
''*'' 0.05 ''.'' 0.1 '' '' 1
It turns out that mod2 has the right level of complexity for this dataset.
However when I looked at its summary, I got a correlation of -0.87 for the
random effects relative to the T effect and -1 for the random effects
relatively to the Z.
summary(mod2)
Linear mixed model fit by maximum likelihood [''lmerMod'']
Formula: dT_purs ~T + Z + (1 + T | subject) + (1 + Z | subject)
Data: x
AIC BIC logLik deviance
-695.6729 -654.9655 357.8364 -715.6729
Random effects:
Groups Name Variance Std.Dev. Corr
subject (Intercept) 0.0032063 0.05662
T 0.0117204 0.10826 -0.87
subject.1 (Intercept) 0.0005673 0.02382
Z 0.0025859 0.05085 1.00
Residual 0.0104551 0.10225
Number of obs: 433, groups: soggetto, 7
Fixed effects:
Estimate Std. Error t value
(Intercept) 0.02489 0.03833 0.650
T 0.52010 0.05905 8.808
Z -0.09019 0.02199 -4.101
Correlation of Fixed Effects:
(Intr) tempo
T -0.901
Z 0.218 -0.026
If I understand correctly what the correlation parameters reported in the
table are, the correlation of 1 means that, for the Z effects the random
intercept is perfectly collinear with the random slope. Thus, we fit the
wrong model. A random intercept only model would have sufficed.
Am I correct?
If so, should I take mod1 (mod1 <- dT_purs ~ T + Z + (1 + T | subject )
instead of mod2 to fit my data?
Why are these results contradictory?
Finally is a correlation value of -0.87 a too high or an acceptable value ?
Thanks for help me in advance!
Best
Benedetta
---
Benedetta Cesqui, Ph.D.
Laboratory of Neuromotor Physiology
IRCCS Fondazione Santa Lucia
Via Ardeatina 306
00179 Rome, Italy
tel: (+39) 06-51501485
fax:(+39) 06-51501482
E_mail: b.cesqui@hsantalucia.it
[[alternative HTML version deleted]]