Hello,
Use nested lapply(). Like this:
m1 <- lapply(varlist0,function(v) {
lapply(outcomes, function(o){
f <- sprintf("%s~
s(time,bs='cr',k=200)+s(temp,bs='cr') +
Lag(%s,0:6)", o, v)
gam(as.formula(f),family=quasipoisson,na.action=na.omit,data=df)
})})
m1 <- unlist(m1, recursive = FALSE)
m1
Hope this helps,
Rui Barradas
Em 12-11-2013 09:53, Kuma Raj escreveu:> I have asked this question on SO, but it attracted no response, thus I am
> cross- posting it here with the hope that someone would help.
>
> I want to estimate the effect of pm10 and o3 on three outcome(death, cvd
> and resp). What I want to do is run one model for each of the main
> predictors (pm10 and o3) and each outcome(death, cvd and resp). Thus I
> expect to obtain 6 models. The script below works for one outcome (death)
> and I wish to use it for more dependent variables.
>
>
>
> library(quantmod)
> library(mgcv)
> library(dlnm)
> df <- chicagoNMMAPS
> outcomes<- c("death", "cvd", "resp ")
> varlist0 <- c("pm10", "o3")
>
> m1 <- lapply(varlist0,function(v) {
> f <- sprintf("death~
s(time,bs='cr',k=200)+s(temp,bs='cr') +
> Lag(%s,0:6)",v)
> gam(as.formula(f),family=quasipoisson,na.action=na.omit,data=df)
> })
>
> Thanks
>
> [[alternative HTML version deleted]]
>
> ______________________________________________
> R-help at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide
http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.
>