Hi, May be this helps: dat1<- read.table(text=" ID county date company 1?????? x????? 1?????? comp1 2?????? y????? 1?????? comp3 3?????? y????? 2?????? comp1 4?????? y????? 3?????? comp1 5??????? x????? 2????? comp2 ",sep="",header=TRUE,stringsAsFactors=FALSE) dat2<- dat1 dat1$answer<-unsplit(lapply(split(dat1,dat1$county),function(x) do.call(rbind,lapply(seq_len(nrow(x)),function(i) {x1<-x[1:i,]; x2<-table(x1$company)/sum(table(x1$company));sum(x2^2)}))),dat1$county) ?dat1 #? ID county date company??? answer #1? 1????? x??? 1?? comp1 1.0000000 #2? 2????? y??? 1?? comp3 1.0000000 #3? 3????? y??? 2?? comp1 0.5000000 #4? 4????? y??? 3?? comp1 0.5555556 #5? 5????? x??? 2?? comp2 0.5000000 #or dat2$answer<-with(dat2,unlist(ave(company,county,FUN=function(x) lapply(seq_along(x),function(i) {x1<-table(x[1:i]);sum((x1/sum(x1))^2)})))) ?dat2 #? ID county date company??? answer #1? 1????? x??? 1?? comp1 1.0000000 #2? 2????? y??? 1?? comp3 1.0000000 #3? 3????? y??? 2?? comp1 0.5000000 #4? 4????? y??? 3?? comp1 0.5555556 #5? 5????? x??? 2?? comp2 0.5000000 A.K. Hi - I have a seemingly complex data summarizing problem that I am having a hard time wrapping my mind around. What I'm trying to do is sum the square of all company market shares ?in a given county, UP TO that corresponding time. Sum of market share is defined as: Number of company observations/ Total observations. Here is example data and desired answer: ID county date company answer 1 ? ? ? x ? ? ?1 ? ? ? comp1 ? ? ? ? ? 1 2 ? ? ? y ? ? ?1 ? ? ? comp3 ? ? ? ? ? 1 3 ? ? ? y ? ? ?2 ? ? ? comp1 ? ? ? ? ? 0.5 4 ? ? ? y ? ? ?3 ? ? ? comp1 ? ? ? ? ? 0.55556 5 ? ? ? ?x ? ? ?2 ? ? ?comp2 ? ? ? ? ?0.5 For example, to get the answer for ID 4, we look at county y, dates 1, 2, 3 and sum: ?[(2/3)comp1]^2 +[(1/3)comp3]^2 = 0.55556 I've tried cumsum, but am simply stuck given all of the different conditions. ?I have a large matrix of data for this with several hundred companies, tens of counties and unique dates. Any help would be extremely appreciated. Thank you,