Hi, I'm using geeglm function to account for the repeated measure. fit1<- geeglm( binary.outcome ~ age + race + gender + fever.yes.no, data=mydata, id=ID, family=binomial, corstr="exchangeable") summary(fit1)$coef gives too large estimates and standard deviation: Estimate Std.err Wald Pr(>|W|) (Intercept) 3.07e+16 7.20e+14 1821.29 0.00000 age 6.38e+13 2.22e+13 8.24 0.00409 RACEBlack 1.48e+16 6.28e+14 555.35 0.00000 RACEOther -1.84e+16 6.17e+14 887.78 0.00000 SEXFemale 1.84e+16 5.23e+14 1235.19 0.00000 FEVERYes -4.41e+15 4.74e+14 86.73 0.00000 FEVERUnknown 1.76e+16 1.60e+15 120.55 0.00000 compared to the estimates from the glm model: Estimate Std. Error z value Pr(>|z|) (Intercept) -0.65924 6.41e-01 -1.02875 0.3036 age 0.00686 1.16e-02 0.59304 0.5532 RACEBlack 0.60687 4.13e-01 1.46900 0.1418 RACEOther -1.18660 1.24e+00 -0.96054 0.3368 SEXFemale 0.61805 3.57e-01 1.73021 0.0836 FEVERYes -0.96825 3.77e-01 -2.56554 0.0103 FEVERUnknown 0.39761 9.68e-01 0.41087 0.6812 I have 160 observations in my data, and 146 unique ID. Is that the problem? Because I don't have "enough" repeated measures for each ID? Thank you very much -- View this message in context: http://r.789695.n4.nabble.com/geeglm-estimates-and-standard-deviation-are-too-large-tp3855902p3855902.html Sent from the R help mailing list archive at Nabble.com.