Lesnoff, Matthieu (ILRI)
2005-Jun-30 06:51 UTC
RE : [R] Dispersion parameter in Neg Bin GLM
Edward, you also can use the package aod on CRAN, see the help page of the function negbin. Best Matthieu An example:> library(aod) > data(dja) > negbin(y ~ group + offset(log(trisk)), ~group, dja, fixpar = list(4, 0))Negative-binomial model ----------------------- negbin(formula = y ~ group + offset(log(trisk)), random = ~group, data = dja, fixpar = list(4, 0)) Convergence was obtained after 113 iterations. Fixed-effect coefficients: Estimate Std. Error z value Pr(> |z|) (Intercept) -0.5526 0.2277 -2.4267 0.0152 groupTREAT -1.0205 0.2598 -3.9287 < 1e-4 Overdispersion coefficients: Estimate Std. Error z value Pr(> z) phi.groupCTRL 0.8287 0.412 2.0117 0.0221 Overdispersion coefficients set to fixed values: Value phi.groupTREAT 0 Log-likelihood = -121.149; nbpar = 3; df.residual = 72; Deviance = 111.826; AIC = 248.297 ________________________________ De: r-help-bounces at stat.math.ethz.ch de la part de Edward McNeil Date: jeu. 6/30/2005 8:50 ??: r-help at r-project.org Objet : [R] Dispersion parameter in Neg Bin GLM Hi, Can someone tell me if it is possible to set the dispersion parameter constant when fitting a negative binomial glm in R? I've looked at the documentation and can't find the appropriate argument to pass. In STATA I can type: nbreg depvar [indepvar...], offset(offset) dispersion(constant). Thank you [[alternative HTML version deleted]] ______________________________________________ R-help at stat.math.ethz.ch mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide! http://www.R-project.org/posting-guide.html
This does not appear to be the same model as STATA. Your model (as documented) has dispersion (var/mean) of 1 + phi*mu, so you need to constrain phi = a/mu to get a constant dispersion. The output shown is not at all consistent with that. On Thu, 30 Jun 2005, Lesnoff, Matthieu (ILRI) wrote:> Edward, you also can use the package aod on CRAN, see the help page of > the function negbin. > > Best > > Matthieu > > An example: > >> library(aod) >> data(dja) >> negbin(y ~ group + offset(log(trisk)), ~group, dja, fixpar = list(4, 0)) > > Negative-binomial model > ----------------------- > negbin(formula = y ~ group + offset(log(trisk)), random = ~group, > data = dja, fixpar = list(4, 0)) > Convergence was obtained after 113 iterations. > Fixed-effect coefficients: > Estimate Std. Error z value Pr(> |z|) > (Intercept) -0.5526 0.2277 -2.4267 0.0152 > groupTREAT -1.0205 0.2598 -3.9287 < 1e-4 > Overdispersion coefficients: > Estimate Std. Error z value Pr(> z) > phi.groupCTRL 0.8287 0.412 2.0117 0.0221 > Overdispersion coefficients set to fixed values: > Value > phi.groupTREAT 0 > Log-likelihood = -121.149; nbpar = 3; df.residual = 72; Deviance = 111.826; AIC = 248.297-- Brian D. Ripley, ripley at stats.ox.ac.uk Professor of Applied Statistics, http://www.stats.ox.ac.uk/~ripley/ University of Oxford, Tel: +44 1865 272861 (self) 1 South Parks Road, +44 1865 272866 (PA) Oxford OX1 3TG, UK Fax: +44 1865 272595