try this:
a <- c(0.5343909, -0.7784353, -0.0568370, 1.8772838, -1.3183407,
0.8227418)
mean <- c(0, 0)
Sigma <- matrix(c(1, 0, 0, 1), 2, 2)
library(mvtnorm)
ind <- combn(length(a), 2)
x <- cbind(a[ind[1, ]], a[ind[2, ]])
dmvnorm(x, mean, Sigma)
I hope it helps.
Best,
Dimitris
On 2/23/2010 8:04 AM, sunivon wrote:>
>
> Hello all,
> Is there a way in R to compute the multivariate normal density of every
pair of entries in a vector efficiently instead of using for loop?
> For example
>
> Suppose I have a vector a=c(v_1,...,v_p)=c(0.5343909, -0.7784353,
-0.0568370, 1.8772838, -1.3183407, 0.8227418,...)
> I want to compute density(v_i, v_j) for every pair of entries (i,j) (i!=j)
in a. The joint bivariate distribution is known to be the same for each pair.
>
> Thanks a lot!
> Ivon
>
>
>
>
> _________________________________________________________________
> [[elided Hotmail spam]]
>
> [[alternative HTML version deleted]]
>
> ______________________________________________
> R-help at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide
http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.
>
--
Dimitris Rizopoulos
Assistant Professor
Department of Biostatistics
Erasmus University Medical Center
Address: PO Box 2040, 3000 CA Rotterdam, the Netherlands
Tel: +31/(0)10/7043478
Fax: +31/(0)10/7043014