Hello, in order to test the parallelism assumption of ordinal regression, would it be appropriate to compare the likelihoods of a model fit by polr {MASS package} with a multinomial model fit by multinom {nnet package}? e.g. # dataframe "ologit" previously read from url("http://www.ats.ucla.edu/stat/r/dae/ologit.csv") require(MASS) ologit.polr <- polr(ordered(apply) ~ factor(pared) + factor(public) + gpa, data=ologit, Hess=TRUE) summary(ologit.polr) require(nnet) ologit.mn <- multinom(factor(apply)~factor(pared) + factor(public) + gpa, data=ologit) summary(ologit.mn) # and then obtain likelihoods for comparison with a chi-square test logLik(ologit.polr) logLik(ologit.mn) Does this seem like a reasonable thing to do? Thanks, Duncan ____________________________________________________________________________ __ Dr. Duncan Mackay School of Biological Sciences Flinders University GPO Box 2100 Adelaide S.A. 5001 AUSTRALIA Phone 61-8-82012627 FAX 61-8-82013015 http://www.scieng.flinders.edu.au/biology/people/academic/mackay_d/index.htm l