similar to: glmm

Displaying 20 results from an estimated 2000 matches similar to: "glmm"

2002 Jan 19
1
correlated random effects in GLMMGibbs ?
Dear R-users, I wondered if anyone has extended GLMMGibbs to include correlated random effects, and if so, whether they would be willing to let me use their code? Jonathan Myles has no plans to extend glmm in this manner within the foreseeable future. With thanks, Patty -- -------------------------------------------------------------------------------- Assoc Prof Patty Solomon
2002 May 13
1
Spatio-temporal analysis of homicide rates
Dear R-listers, I would like to carry out a very basic descriptive analysis of homicides rates in Italy, taking into account both the spatial dimension (103 provinces) and the temporal dimension (10 years), but no covariates. In practice, what I would like to do is to describe spatio-temporal variation of homicide rates, identifying those combinations of province-year where the homicide rate
2002 Oct 28
2
glmm for binomial data? (OT)
A while ago (April 2002) there was a short thread on software for generalized linear mixed models. Since that time, has anyone written or found R code to use a glmm to analyze binomial data? I study CWD in white-tailed deer, and I'd like to do a similar analysis as Kleinschmidt et al. (2001, Am. J. Epidemiology 153: 1213-1221) used to assess control for spatial structure in malaria
2010 Nov 16
1
Help fitting spatial glmm with correlated random effects
Greetings, May you please suggest a package or function to use for fitting a GLMM (generalized linear mixed model) with spatially correlated random effects? Thank you, Elijah DePalma [[alternative HTML version deleted]]
2004 Nov 09
1
Some questions to GLMM
Hello all R-user I am relative new to the R-environment and also to GLMM, so please don't be irritated if some questions don't make sense. I am using R 2.0.0 on Windows 2000. I investigated the occurrence of insects (count) in different parts of different plants (plantid) and recorded as well some characteristics of the plant parts (e.g. thickness). It is an unbalanced design with 21
2005 Dec 15
1
generalized linear mixed model by ML
Dear All, I wonder if there is a way to fit a generalized linear mixed models (for repeated binomial data) via a direct Maximum Likelihood Approach. The "glmm" in the "repeated" package (Lindsey), the "glmmPQL" in the "MASS" package (Ripley) and "glmmGIBBS" (Myle and Calyton) are not using the full maximum likelihood as I understand. The
2005 Jul 13
3
nlme, MASS and geoRglm for spatial autocorrelation?
Hi. I'm trying to perform what should be a reasonably basic analysis of some spatial presence/absence data but am somewhat overwhelmed by the options available and could do with a helpful pointer. My researches so far indicate that if my data were normal, I would simply use gls() (in nlme) and one of the various corSpatial functions (eg. corSpher() to be analagous to similar analysis in SAS)
2002 Apr 01
2
writing a package for generalized linear mixed modesl
Happy new month, everyone! I am planning to write a NIH grant proposal to study ways to speed Monte Carlo based maximum likelihood algorithm for hierarchical models with a focus on generalized linear mixed models (GLM with random effects). I thought it would be nice and also increase the chance of funding if I could produce an R package in the process. I understand that Prof. Pinheiro ang Bates
2002 Apr 12
1
summary: Generalized linear mixed model software
Thanks to those who responded to my inquiry about generalized linear mixed models on R and S-plus. Before I summarize the software, I note that there are several ways of doing statistical inference for generalized linear mixed models: (1)Standard maximum likelihood estimation, computationally intensive due to intractable likelihood function (2) Penalized quasi likelihood or similar
2007 Aug 07
2
GLMM: MEEM error due to dichotomous variables
I am trying to run a GLMM on some binomial data. My fixed factors include 2 dichotomous variables, day, and distance. When I run the model: modelA<-glmmPQL(Leaving~Trial*Day*Dist,random=~1|Indiv,family="binomial") I get the error: iteration 1 Error in MEEM(object, conLin, control$niterEM) : Singularity in backsolve at level 0, block 1 >From looking at previous help
2004 Nov 23
2
Convergence problem in GLMM
Dear list members, In re-running with GLMM() from the lme4 package a generalized-linear mixed model that I had previously fit with glmmPQL() from MASS, I'm getting a warning of a convergence failure, even when I set the method argument of GLMM() to "PQL": > bang.mod.1 <- glmmPQL(contraception ~ as.factor(children) + cage + urban, + random=~as.factor(children) + cage +
2002 Oct 21
4
mixed effect-models
Hello, ? I believe that in R, it is not possible to analyze mixed effect-models when the distribucion is not gaussian (p.e. binomial or poisson), isn't? ? Somebody can suggest me alternative? ? thanks ? xavi ? -.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.- r-help mailing list -- Read http://www.ci.tuwien.ac.at/~hornik/R/R-FAQ.html Send "info",
2006 Feb 07
1
post-hoc comparisons following glmm
Dear R community, I performed a generalized linear mixed model using glmmPQL (MASS library) to analyse my data i.e : y is the response with a poisson distribution, t and Trait are the independent variables which are continuous and categorical (3 categories C, M and F) respectively, ind is the random variable. mydata<-glmmPQL(y~t+Trait,random=~1|ind,family=poisson,data=tab) Do you think it
2002 May 23
1
Multilevel model with dichotomous dependent variable
Greetings- I'm working with data that are multilevel in nature and have a dichotomous outcome variable (presence or absence of an attribute). As far as I can tell from reading archives of the R and S lists, as well as Pinheiro and Bates and Venables and Ripley, - nlme does not have the facility to do what amounts to a mixed-effects logistic regression. - The canonical alternative is
2004 Mar 24
2
GLMM
Dear all, I'm working with count data following over-dispersed poisson distribution and have to work with mixed-models on them (like proc GENMOD on SAS sys.). I'm still not to sure about what function to use. It seems to me that a glmmPQL will do the job I want, but I'll be glad if people who worked on this type of data can share what they learned. Thanks for your time. simon
2011 Mar 04
1
AIC on GLMM pscl package
Hello, I'm using GLMM on the pscl package and i'm not getting the AIC on the summary. The code i'm using is (example) : mmall3 <-glmmPQL(allclues ~ cycloc + male, data=dados, family=poisson, random=~1|animal/idfid) and the results: Linear mixed-effects model fit by maximum likelihood Data: dados AIC BIC logLik NA NA NA Random effects: Formula: ~1 | animal
2004 Jan 30
0
GLMM (lme4) vs. glmmPQL output (summary with lme4 revised)
This is a summary and extension of the thread "GLMM (lme4) vs. glmmPQL output" http://maths.newcastle.edu.au/~rking/R/help/04/01/0180.html In the new revision (#Version: 0.4-7) of lme4 the standard errors are close to those of the 4 other methods. Thanks to Douglas Bates, Saikat DebRoy for the revision, and to G?ran Brostr?m who run a simulation. In response to my first posting, Prof.
2005 Aug 18
1
GLMM - Am I trying the impossible?
Dear all, I have tried to calculate a GLMM fit with lmer (lme4) and glmmPQL (MASS), I also used glm for comparison. I am getting very different results from different functions, and I suspect that the problem is with our dataset rather than the functions, but I would appreciate help in deciding whether my suspicions are right. If indeed we are attempting the wrong type of analysis, some
2005 Jan 14
1
glmm multinomial?
I'm looking for something like Brian Ripley's glmmPQL that will handle multinomial data. Does anyone know of anything? Thanks, Ted. -- Dr E.A. Catchpole Visiting Fellow Univ of New South Wales at ADFA, Canberra, Australia and University of Kent, Canterbury, England - e.catchpole at adfa.edu.au - www.ma.adfa.edu.au/~eac - fax: +61 2 6268 8687 - ph: +61 2 6268 8895
2012 Aug 07
1
Which R function for GLMM with binary response, nested random factors with temporal correlation?
Despite lots of investigation, I haven't found any R packages might be suitable for the following problem. I'd be very grateful for suggestions. I have three-way nested data, with a series of measures (obs) taken in quick succession (equal time spacing) from each subject on different days. The measures taken on the same day are temporally correlated, so I'd like to use an AR1