Displaying 19 results from an estimated 19 matches for "bonf".
Did you mean:
bof
2009 Nov 16
1
No Visible Binding for global variable
...NETARY=English_United States.1252
[4] LC_NUMERIC=C
[5] LC_TIME=English_United States.1252
attached base packages:
[1] stats graphics grDevices utils datasets methods base
cheat.fit <- function(dat, key, wrongChoice, alpha = .01, rfa = c('nr', 'uni', 'bsct'), bonf = c('yes','no'), con = 1e-12, lower = 0, upper = 50){
bonf <- tolower(bonf)
bonf <- match.arg(bonf)
rfa <- match.arg(rfa)
rfa <- tolower(rfa)
dat <- t(dat)
correctStuMat...
2006 Mar 09
1
bugs in simtest (PR#8670)
...5 % 97.5 % t value Std.Err.
strategyPrice-strategyConvenience 31.10 -40.67 102.87 1.043 29.824
strategyQuality-strategyConvenience 75.45 3.68 147.22 2.530 29.824
strategyQuality-strategyPrice 44.35 -27.42 116.12 1.487 29.824
p raw p Bonf p adj
strategyPrice-strategyConvenience 0.301 0.904 0.553
strategyQuality-strategyConvenience 0.014 0.043 0.037
strategyQuality-strategyPrice 0.143 0.428 0.305
This gives correct 95% confidence intervals and adjusted p-values for the
Tukey multiple comparisons procedure.
Next we issu...
2010 Oct 17
0
Help on choosing the appropriate analysis method
...'d like to know whether the differences between the group means are
significant. Is a pairwise t-test (for location, and a simple t-test for
job) appropriate in this case?
data = read.table("data.txt", header=T, nrows=90)
attach(data)
res1 = pairwise.t.test(all, location, p.adj="bonf")
print(res1)
res2 = pairwise.t.test(M, location, p.adj="bonf")
print(res2)
res3 = pairwise.t.test(OA, location, p.adj="bonf")
print(res3)
res4 = pairwise.t.test(UE, location, p.adj="bonf")
print(res4)
res1 = t.test(all~job)
print(res1)
res2 = t.test(M~job)
print(...
2008 Apr 04
2
pairwise.t.test for paired data
...10.3912598689021, 8.04934992955112, 13.3935024789408,
12.1276080143311, 11.2987640203845, 2.05386456839974, 12.8386335687123,
3.84418682233211, 17.4626505871045, 6.5947625121599, -10.6664750811034,
21.3346023277454, 4.99216977422232)
Then I do the tests
> pairwise.t.test(d,n,p.adjust="bonf",paired=F)
Pairwise comparisons using t tests with pooled SD
data: d and n
x y
y 0.092 -
z 0.326 1.000
P value adjustment method: bonferroni
Assuming the data are paired:
> pairwise.t.test(d,n,p.adjust="bonf",paired=T)
Pairwise comparisons u...
2004 May 20
4
pmvt problem in multcomp
...ests: Dunnett contrasts
Call:
simtest.formula(formula = y ~ f, data = dat, type = "Dunnett")
Dunnett contrasts for factor f
Contrast matrix:
f1 f2 f3
f2-f1 0 -1 1 0
f3-f1 0 -1 0 1
Absolute Error Tolerance: 0.001
Coefficients:
Estimate t value Std.Err. p raw p Bonf p adj
f2-f1 4.015 -0.677 5.934 0.499 0.997 0.722
f3-f1 2.486 -0.419 5.934 0.675 0.997 0.722
---------------------------------
-- example 2 -------------------------------
require(multcomp)
Loading required package: multcomp
Loading required package: mvtnorm
[1] TRUE
y <- as.v...
2004 Aug 13
5
simtest for Dunnett's test
...test(y ~ h,cmatrix=cbind(0,m)))
rownames(result$estimate)
result
I want to compare my results with the results obtained with SigmaStat
Software.
In my results, i retrieve a correct q' value with the simtest t value
How can i say if P<0.05 like the SigmStat results?
Can i use p raw value, p bonf value, p adj value or other to compare
directly? Or can i use the Dunnett's tables?
Thanks for your help!
Laurent Houdusse
Analyste Programmeur
2005 May 15
3
adjusted p-values with TukeyHSD?
hi list,
i have to ask you again, having tried and searched for several days...
i want to do a TukeyHSD after an Anova, and want to get the adjusted
p-values after the Tukey Correction.
i found the p.adjust function, but it can only correct for "holm",
"hochberg", bonferroni", but not "Tukey".
Is it not possbile to get adjusted p-values after Tukey-correction?
sorry, if this is an often-answered-question, but i didn??t find it on
the list archive...
thx a lot, list, Chris
Christoph Strehblow, MD
Department of Rheumatology, Diabetes and Endoc...
2009 Jan 08
1
Letter-based representation of pairwise comparisons
...one
2 1 2 one
2 2 3 two
2 3 2 two
1 4 2 three
9 8 1 three
I have no normality, so I did a kruskal test which showed significant
differences in some cases. As post hoc pairwise comparisons (the idea is to
make an equivalent to Tukey test after an ANOVA) I tried with a paired
wilcoxon test with the Bonferroni's correction (pairwise.wilcox.test(A,
factor, p.adj="bonf") and other for B, and so on) and, now, I need to modify
the output to show a letter-based representation of all pairwise
comparisons. Some algorithms have been published
(http://www.accessmylibrary.com/coms2/summary_0286...
2009 Oct 23
1
Bonferroni with unequal sample sizes
Hello-
I have run an ANOVA on 4 treatments with unequal sample sizes (n=9,7,10 and 10). I want to determine where my sig. differences are between treatments using a Bonferroni test, and have run the code:
pairwise.t.test(Wk16, Treatment, p.adf="bonf")
I receive an error message stating that my arguments are of unequal length:
Error in tapply(x, g, mean, na.rm = TRUE) :
arguments must have same length
Is there a way to run this test even with unequa...
2004 Feb 03
1
output from multcomp and lm
...contrasts for factor Cond, covariable: Q1
Contrast matrix:
CondA CondB CondC
CondB-CondA 0 -1 1 0 0
CondC-CondA 0 -1 0 1 0
CondC-CondB 0 0 -1 1 0
Absolute Error Tolerance: 0.001
Coefficients:
Estimate t value Std.Err. p raw p Bonf p adj
CondB-CondA 5.555 -1.461 3.802 0.151 0.453 0.319
CondC-CondB -5.248 -1.365 3.661 0.179 0.453 0.319
CondC-CondA 0.306 -0.084 3.844 0.934 0.934 0.934
The results from two analyses seem so different that I am
wondering why. I do understand that multiple compa...
2004 Jun 14
0
inheritance problem in multcomp package (PR#6978)
...fidence intervals: model contrasts
model contrasts for factor
Contrast matrix:
[,1] [,2] [,3]
[1,] 1 0 0
[2,] 0 1 0
[3,] 0 0 1
Absolute Error Tolerance: 1e-04
90 % quantile: 1.8431
Coefficients:
Estimate -- 90 % t value Std.Err. p raw p Bonf p adj
blanketb1-b0 -2.1333 -Inf 0.8226 -1.3302 1.6038 0.0958 0.2874 0.2412
blanketb2-b0 -7.4667 -Inf -4.5108 -4.6556 1.6038 0.0000 0.0001 0.0001
blanketb3-b0 -1.6667 -Inf -0.0360 -1.8837 0.8848 0.0337 0.1012 0.0924
> ## change lm to aov
> aovmod <- aov(minutes ~ blanket, data=re...
2002 Jun 26
2
contrast matrix in package multcomp
...rial5
trial2-trial1 -1 1 0 0 0
trial3-trial1 -1 0 1 0 0
trial4-trial1 -1 0 0 1 0
trial5-trial1 -1 0 0 0 1
Absolute Error Tolerance: 0.001
Coefficients:
Estimate t value Std.Err. p raw p Bonf p adj
trial3-trial1 0.745 -2.911 0.256 0.006 0.025 0.021
trial2-trial1 -0.688 -2.686 0.256 0.011 0.033 0.029
trial4-trial1 0.091 -0.357 0.256 0.724 1.447 0.912
trial5-trial1 0.032 -0.127 0.256 0.900 1.447 0.912
But now I want to test trial3 against all other trials a...
2002 Oct 18
7
RAM usage
Hi,
I'm having problems while working with large data sets with R 1.5.1 in
windows 2000. Given a integer matrix size of 30 columns and 15000 rows
my function should return a boolean matrix size of about 5000 rows and
15000 columns.
First of all I tried to run this function on computer with 256 MB of
RAM. I increased memory limit of R with memory.limit() up to 512 MB. I
was inspecting
2005 Mar 09
1
multiple comparisons for lme using multcomp
...-Al400 0 0 -1 0 0 1
Al800-Al600 0 0 0 -1 1 0
control-Al600 0 0 0 -1 0 1
control-Al800 0 0 0 0 -1 1
Absolute Error Tolerance: 0.001
Coefficients:
Estimate t value Std.Err. p raw p Bonf p adj
Al800-Al100 -2.253 -10.467 0.213 0.000 0.000 0.000
Al600-Al100 -2.185 -10.389 0.207 0.000 0.000 0.000
Al400-Al100 -2.036 -9.850 0.210 0.000 0.000 0.000
Al200-Al100 -1.712 -8.051 0.215 0.000 0.000 0.000
control-Al100 -1.487 -7.243 0.205 0.000 0.000 0.00...
2005 May 23
0
using lme in csimtest
....formula(formula = response ~ treatment * (site + time), whichf =
"treatment", type = "Tukey")
#
# Tukey contrasts for factor treatment, covariables: site +time
+treatment:site + treatment:time
#
#Coefficients:
# Estimate t value Std.Err. p raw p Bonf p adj
#treatment3-treatment1 -0.655 -2.004 0.327 0.050 0.149 0.120
#treatment3-treatment2 -0.581 -1.777 0.327 0.081 0.162 0.143
#treatment2-treatment1 -0.074 -0.227 0.327 0.821 0.821 0.821
___
drs. René Eschen
CABI Bioscience Switzerland Centre
1 Rue des Grillons
CH-2800 Delém...
2006 Feb 16
0
(m)simtest ?
...ugais",6), rep("francais",6)))
>tousy<-data.frame(tous_y,lg)
#simtest for only one response
>summary(simtest(F1_nearey~lg, type="Tukey", data=tousy))
Absolute Error Tolerance: 0.001
Coefficients:
Estimate t value Std.Err. p raw p Bonf p adj
lgitalien-lgfrancais -0.074 -1.898 0.039 0.066 1 0.495
lgitalien-lganglais -0.064 -1.630 0.039 0.112 1 0.658
lgitalien-lgarabe -0.055 -1.413 0.039 0.167 1 0.780
lgitalien-lgespagnol -0.046 -1.166 0.039 0.252 1 0.891
lgportugais-lgfrancai...
2006 Apr 12
0
how to interpret the results of a simint call
...g-Groupctrl 0 -1 1 0
Groupshort-Groupctrl 0 -1 0 1
Groupshort-Grouplong 0 0 -1 1
Absolute Error Tolerance: 0.001
95 % quantile: 2.519
Coefficients:
Estimate 2.5 % 97.5 % t value Std.Err. p raw p Bonf
Grouplong-Groupctrl -134.246 -930.286 661.794 -0.425 316.076 0.675 1.000
Groupshort-Groupctrl 978.056 182.016 1774.097 3.094 316.076 0.005 0.016
Groupshort-Grouplong 1112.303 400.303 1824.303 3.934 282.707 0.001 0.002
p adj
Grouplong-Groupctrl 0.906
Groupshort-...
2006 Sep 11
2
Wilcoxon Rank-Sum Test with Bonferroni's correction
Dear all,
I am trying to run Wilcoxon Rank-Sum Test with Bonferroni's
correction. I have two lists: l0, l1:
mapply(function(x,y)wilcox.test(x,y)$p.value, l0, l1)
How do I run Bonferroni's correction on mapply? Any help is much apperciated.
Thanks,
-Raj
2009 Feb 27
2
Adjusting confidence intervals for paired t-tests of multiple endpoints
...A,60,6))
names(df2)<-c('t','df','p','lower','upper','mean.diff')
for (i in 1:60) {df2[i,1:6]<-as.numeric(
unlist(t.test(df1[,i+1]~df1$trt,paired=T))[1:6])}
Now, I want to adjust the confidence intervals for multiple comparisons.
For a Bonferroni-adjustment, I did the following:
df2$std.error.of.diff<-df2$mean.diff/df2$t
ci<-qt(p=1-(0.05/nrow(df2)),df=df2$df)*df2$std.error.of.diff
ci.bonf<-data.frame(lower=df2$mean.diff-ci,upper=df2$mean.diff+ci)
I hope this is the correct method. However, I think, the
Bonferroni-ad...