search for: predictlasso

Displaying 5 results from an estimated 5 matches for "predictlasso".

2023 Oct 24
1
running crossvalidation many times MSE for Lasso regression
...; >> >> ? ? ? >> >> Training =T [sam,] >> ? ? ? >> >> Testing = T [-sam,] >> ? ? ? >> >> >> ? ? ? >> >> test1=matrix(c(Testing$x1,Testing$x2),ncol=2) >> ? ? ? >> >> >> ? ? ? >> >> predictLasso=predict(cv_model, newx=test1) >> ? ? ? >> >> >> ? ? ? >> >> >> ? ? ? >> >> ypred=predict(predictLasso,newdata=test1) >> ? ? ? >> >> y=T[-sam,]$y >> ? ? ? >> >> >> ? ? ? >> >> MSE = mean...
2023 Oct 22
1
running crossvalidation many times MSE for Lasso regression
...ambda.min best_lambda ? ? # Create a list to store the results lst<-list() ? # This statement does the repetitions (looping) for(i in 1?:1000) { ? n=45 ? p=0.667 ? sam=sample(1?:n,floor(p*n),replace=FALSE) ? Training =T [sam,] Testing = T [-sam,] ? test1=matrix(c(Testing$x1,Testing$x2),ncol=2) ? predictLasso=predict(cv_model, newx=test1) ? ? ypred=predict(predictLasso,newdata=test1) y=T[-sam,]$y ? MSE = mean((y-ypred)^2) MSE lst[i]<-MSE } mean(unlist(lst)) ##################################################################? ? ? ?
2023 Oct 22
2
running crossvalidation many times MSE for Lasso regression
...<-list() > > # This statement does the repetitions (looping) > for(i in 1 :1000) { > > n=45 > > p=0.667 > > sam=sample(1 :n,floor(p*n),replace=FALSE) > > Training =T [sam,] > Testing = T [-sam,] > > test1=matrix(c(Testing$x1,Testing$x2),ncol=2) > > predictLasso=predict(cv_model, newx=test1) > > > ypred=predict(predictLasso,newdata=test1) > y=T[-sam,]$y > > MSE = mean((y-ypred)^2) > MSE > lst[i]<-MSE > } > mean(unlist(lst)) > ################################################################## > > > > > ____...
2023 Oct 23
1
running crossvalidation many times MSE for Lasso regression
...*n),replace=FALSE) >? ? ? >> >> >? ? ? >> >> Training =T [sam,] >? ? ? >> >> Testing = T [-sam,] >? ? ? >> >> >? ? ? >> >> test1=matrix(c(Testing$x1,Testing$x2),ncol=2) >? ? ? >> >> >? ? ? >> >> predictLasso=predict(cv_model, newx=test1) >? ? ? >> >> >? ? ? >> >> >? ? ? >> >> ypred=predict(predictLasso,newdata=test1) >? ? ? >> >> y=T[-sam,]$y >? ? ? >> >> >? ? ? >> >> MSE = mean((y-ypred)^2) >? ? ? >> &gt...
2023 Oct 23
2
running crossvalidation many times MSE for Lasso regression
...*n),replace=FALSE) > >> >> > >> >> Training =T [sam,] > >> >> Testing = T [-sam,] > >> >> > >> >> test1=matrix(c(Testing$x1,Testing$x2),ncol=2) > >> >> > >> >> predictLasso=predict(cv_model, newx=test1) > >> >> > >> >> > >> >> ypred=predict(predictLasso,newdata=test1) > >> >> y=T[-sam,]$y > >> >> > >> >> MSE = mean((y-ypred)^2) > >> &gt...