Hello, I'm currently trying to model the movement of a slope (v.obs) with a regression model. The data can be found following the given links: either http://www.sendspace.com/file/dnugwc or http://rapidshare.com/files/420569660/sel.day.txt I want to use the Box-Cox transformation to normalize the response as well as the predictor variables. The scatterplot looks like this: library(zoo) library(alr3) load("sel.day.txt") sel.p1<-window(sel, start=as.POSIXct("2008-04-05"), end=as.POSIXct("2009-04-01")) pairs(~v.obs+ snow+ HH6.1+ Q.Enz+ pcpt+ qd,data=sel.p1,gap=0.4,cex.labels=1.5) In Sheather: "A Modern Approach to Regression with R" the function bctrans is used to calculate lambda for the variables. I use "yeo.johnson" since there are values=0 in the data. Doing this creates following output: 2> summary(bctrans(~v.obs+ snow+ pcpt+ Q.Enz+ qd+ HH6.1, data=sel.p1, family="yeo.johnson")) yeo.johnson Transformations to Multinormality Est.Power Std.Err. Wald(Power=0) Wald(Power=1) v.obs -49.9674 5.5747 -8.9632 -9.1426 snow -4.1130 0.3326 -12.3655 -15.3719 pcpt 0.6111 0.0811 7.5341 -4.7950 Q.Enz -0.8584 0.0904 -9.4967 -20.5601 qd -26.1100 2.3432 -11.1427 -11.5695 HH6.1 -6.0205 0.0023 -2653.7643 -3094.5528 LRT df p.value LR test, all lambda equal 0 549.4523 6 0 LR test, all lambda equal 1 1414.1770 6 0 So what to do with that. I tried transforming my variables with the Est.Power given in the output. I rounded the values more or less arbitrarily for the first try: v.obs<-(sel.p1$v.obs^(-0.5)-1)/-0.5 snow<-(sel.p1$snow^(-4)-1)/-4 pcpt<-(sel.p1$pcpt^(0.5)-1)/0.5 Q.Enz<-(sel.p1$Q.Enz^(-0.9)-1)/-0.9 qd<-(sel.p1$qd^(-26)-1)/-26 HH6.1<-(sel.p1$HH6.1^(-6)-1)/-6 trans<-merge(v.obs,qd,pcpt,snow,HH6.1,Q.Enz) This gives me a lot of -Inf's which I d'ont like too much. I thought about transforming the data first, e.g v.obs<-v.obs*10^5. But that doesn't seem the right way, and doing that i often get errors from bctrans: 2> summary(bctrans(~ v.obs+ snow+ pcpt+ Q.Enz+ qd+ HH6.1, data=sel.p1, family="yeo.johnson")) Error in optim(start, neg.kernel.profile.logL, hessian = TRUE, method = "L-BFGS-B", : L-BFGS-B needs finite values of 'fn' These errors also happen when i try another formula without the response variable: 2> summary(bctrans(~ snow+ pcpt+ Q.Enz+ qd+ HH6.1, data=sel.p1, family="yeo.johnson")) Error in optim(start, neg.kernel.profile.logL, hessian = TRUE, method = "L-BFGS-B", : L-BFGS-B needs finite values of 'fn' Does anybody have an idea how to cope with the data to get proper parameters for the transformation? Thanks a lot Axel Kasparek TU M?nchen