Hi, I want to use singular value decompositions (SVD) to remove some artifacts in my microarray data. what i do is replacing the first eigenvalue to zero: library(MASS) data <- as.matrix(read.table("data.txt", header=TRUE,row.names=1, sep "\t", as.is = TRUE)) a.svd <- svd(data) length(a.svd$d) 186 a.svd$d[1]<-0 ds <- diag(1/a.svd$d) u <- a.svd$u v <- a.svd$v us <- as.matrix(u) vs <- as.matrix(v) a.remove <- vs%*%(ds)%*%t(us) does my code above remove the first eigenvalue successfully? Thanks -- Chen, Chao Psychiatry University of Chicago 924 E 57th St, Chicago, IL 60637 U. S. A. MOE Key Laboratory of Contemporary Anthropology and Center for Evolutionary Biology, School of Life Sciences and Institutes of Biomedical Sciences, Fudan University 220# Handan Road, Shanghai (200433) P.R.China [[alternative HTML version deleted]]