Hi list, I have the following code to compute the acf of a time series acfresid <- acf(residfit), where residfit is the series when I type acfresid at the prompt the follwoing is displayed Autocorrelations of series ?residfit?, by lag 0.0000 0.0833 0.1667 0.2500 0.3333 0.4167 0.5000 0.5833 0.6667 0.7500 0.8333 1.000 -0.015 0.010 0.099 0.048 -0.014 -0.039 -0.019 0.040 0.018 0.042 0.9167 1.0000 1.0833 1.1667 1.2500 1.3333 1.4167 1.5000 1.5833 1.6667 1.7500 0.078 -0.029 0.028 -0.016 -0.021 -0.109 0.000 -0.038 -0.006 0.015 -0.032 1.8333 1.9167 2.0000 2.0833 -0.002 0.014 -0.226 -0.030 Residfit is a timeseries object at monthly interval (0.0833), Here I understand R computed the correlation at lags 0 to 2 years. What is surprising to me is if I type acfresidfit at the prompt the following is displayed Autocorrelations of series ?residfit?, by lag 0 1 2 3 4 5 6 7 8 9 10 1.000 -0.004 0.011 0.041 -0.056 0.019 -0.052 -0.027 -0.008 -0.012 -0.034 11 12 13 14 15 16 17 18 19 20 21 0.024 -0.005 0.006 -0.045 0.031 -0.035 -0.011 -0.021 -0.020 -0.010 -0.007 22 23 24 25 -0.038 0.017 0.051 0.038>From the header I understand both are autocorrelation computed at the samelags. but the correlations are different where am I going wrong and which is the correct one. file residfit is also attached(filename-fileree2_test_out.txt) Thanks nuncio -- Nuncio.M Research Scientist National Center for Antarctic and Ocean research Head land Sada Vasco da Gamma Goa-403804 -------------- next part -------------- 4.54540234232334 -14.4778008999506 -3.79668140611868 -7.81347830768482 -6.27293225798647 -6.87201981207487 -6.64965905122317 -6.75123982158051 18.7798275931915 6.81254237499438 17.533220743665 11.8179723199377 -13.8382453401278 3.54961036332585 -3.97203313203956 -1.11029123677042 -2.21102643268432 -1.78925830375029 -1.95531252764598 -1.90169073408017 -16.2251504389829 31.1513180684656 -5.0374856234746 3.64237537817929 35.7825921539956 -24.3131812339976 7.67437033129054 -4.57640838126481 0.136777763691723 -1.678854866888 -0.980572231720623 -1.25035922801876 -23.7161201125191 5.99944860265195 6.61868629783817 -1.3221234388819 10.2414420460275 -8.47848871031044 1.63078138547826 -2.26306522145922 -0.764479820758242 -1.34245520108361 -1.12077197260524 -1.20702766721386 5.98843679322213 7.33766331906203 -2.39623468909737 0.0189595505058051 -9.7878766373797 3.90933597855122 -3.15027883357282 -0.432594130850131 -1.48003000602628 -1.07756318111729 -1.23343646676257 -1.17429968377673 13.8000693717299 6.02003887937457 -8.34195666853458 -1.11099261410632 1.56296156653197 -2.75269349211589 -0.595469082283298 -1.42707843208285 -1.10772380913903 -1.23159158432425 -1.18477973889978 -1.20369456481332 21.7239849952369 -9.66196813638387 -0.891521279149956 9.25210349671729 10.3427639242166 -9.80695249149604 2.11038354823627 -2.47972753146567 -0.713019047280778 -1.39424540580337 -1.13280146608686 31.4656314670951 -0.108909595891454 -0.451065307346077 10.56546397663 -0.647946708663838 18.1367401912301 -3.53869009989366 -2.65626056469235 -0.654807910127964 -1.42643142842822 -1.13017662852014 -1.24514893937744 -13.9208705459327 -5.42722370392831 11.5554183170163 -1.11287843661796 -3.79345702201642 -16.8470908324909 4.77680059742864 -2.61594762546361 -0.680989698404531 -1.42700689601552 -1.14061278256847 -1.25178786153672 -19.2156665052095 3.59214434723623 9.68031595123078 -0.905773257642835 11.6697859140499 -10.438203868059 -3.04292317412673 0.76333844274339 -1.99296992395689 -0.932436833094549 -1.34172353169702 -1.18500028791065 -1.2462406728489 -33.1551884101196 19.0913314431478 -6.7817942558301 5.00083912161537 -3.23440161285666 -0.80515939314185 -1.3987298644782 -1.17104115381219 -1.25960948746092 -1.22639103288181 -1.2400712072929 46.5643087168762 17.4522540549196 -10.9812432669912 10.0524952224354 -1.45992013300943 4.90518728893209 -5.35388787161763 0.342273064087802 -1.85213822475519 -1.00798494789867 -1.33394637973212 -1.20931069510199 -19.8506519887964 -28.6308445373069 5.59082974922492 6.79381059715144 -2.5896614051167 -1.29096368912288 -1.29288147655713 -1.2322294690926 -1.25647397513093 -1.2480258537729 -1.25216727045333 -1.25146060728689 -27.5730296981935 5.19481715163884 5.228853569497 -3.52768178324466 2.26390585067962 10.4196518274518 -8.93836873407259 1.70129806057068 -2.39679794286931 -0.819558553443901 -1.42782263987167 -1.19447559456423 -1.28522288490369 -14.7482003454544 14.9839484682792 -3.23392273754434 3.74619714728151 -11.0770500672262 4.03870484048016 -3.30667482507862 -0.478945510500303 -1.56875824361717 -1.14997259983422 -1.31213006657225 44.8494266790537 45.8747777661297 -25.3865845300823 11.7813342281731 -1.19733031473043 17.5712159736525 -13.2582237918684 3.34350682483415 -3.050508327763 -0.589138057355864 -1.53787032402965 -1.17341307292178 -8.84586874444102 14.3506481320503 -4.07628087468823 4.70987052194326 4.39494471756441 -9.24601453129708 2.62270644700364 -2.78270637507523 -0.702034985002182 -1.50416468660651 -1.19616232201179 -1.31565847889372 -7.00007828891471 17.7085427122653 -1.52528847906864 -0.309797615869734 -0.0566490998050853 -5.19810851787238 0.888428207408488 -2.12551442046893 -0.965769470866167 -1.41326146433027 -1.24182582049418 -1.30873177393562 -16.2289073981339 -51.9225253379257 -19.3386796462891 2.38427752581183 -27.7361423578639 -19.5712596806443 13.8785744284575 -7.13852142522812 0.954021540291741 -2.1632076779049 -0.963688303263673 -1.42649694995691 -14.2992402218195 -7.7314839299092 -3.40738243534069 16.0648045973645 12.5540096462468 29.0526262750623 -22.5561725175906 6.88140413399041 -4.4555411157441 -0.0907078496920803 -1.77244084763005 -1.12571382124252 -1.37564877591533 34.7839130467653 28.1314141876941 -9.37828825214024 24.9150457215948 28.4137340430803 -11.8241441466989 0.0479727446966436 -1.83472654482799 -1.11060981397575 -1.39034661407175 -1.28351147977723 18.67445944689 11.9587572530683 10.1060538197511 -6.63876291771464 4.21145034560747 1.3204638917954 -8.19144085836375 2.37471436021782 -2.74138454700539 -0.772124469702433 -1.53135101326354 -1.23987013938925 -9.1322749650387 -15.4636561035409 13.6503851340109 -4.76950387371555 -1.40466359662758 -19.4286291355178 3.4958224310265 -1.70166897721047 -1.18227605746397 -1.3831761774716 -1.30670010152886 -1.33703826622651 -12.3389669044253 17.081019748534 0.950502974191608 6.15193179619922 1.41534278202565 1.94685751980317 -4.04387353173593 -0.290090836012148 -1.73651560052777 -1.180402947819 -1.39544339583655 -1.31352204946024 -1.34595712238194 -12.7460231813591 -8.118124618078 6.937253849588 -0.346911632202982 -18.5234777171214 8.9166532168388 -5.29169173777222 0.178883057399027 -1.92865771893443 -1.11795723277594 -1.43103639681612 -1.31136151874458 -45.1323735479384 5.28987429475017 5.1013488310248 -1.28711981747298 2.12711010146792 -3.68826205004599 -0.448348064670775 -1.69688816249149 -1.21697851752452 -1.40267410276981 -1.33205311049552 -1.36013655281591 41.7161501827383 -2.59309679589496 -1.95323484236723 7.4552610572846 19.3866434577005 -15.4620565516138 4.07494098685932 -3.44941019277704 -0.552761098305723 -1.66911401065156 -1.2401080627034 -1.40620124578789 36.2302292437129 2.39270813319921 0.195593921782148 1.80841005453113 6.26390892643767 -6.67133269745569 0.679081083389242 -2.15236310178926 -1.06289610991876 -1.48332490618523 -1.32231097445053 36.614796348231 9.52386815316633 -1.65968237968227 9.22472048287561 0.272541303060095 10.7197690902849 -9.45113070862807
Your question is a bit confusing. "acfresidfit" is an object, of which we don't know the origin. with your test file, I arrive at the first correlations (but with integer headings) :> residfit <- read.table("fileree2_test_out.txt") > acf(residfit) > acfresid <- acf(residfit) > acfresidAutocorrelations of series ?residfit?, by lag 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1.000 -0.015 0.010 0.099 0.048 -0.014 -0.039 -0.019 0.040 0.018 0.042 0.078 -0.029 0.028 -0.016 -0.021 -0.109 17 18 19 20 21 22 23 24 25 0.000 -0.038 -0.006 0.015 -0.032 -0.002 0.014 -0.226 -0.030 Could you please check where the object acfresidfit is coming from and how you generated it? Cheers Joris On Tue, Jul 6, 2010 at 9:47 AM, nuncio m <nuncio.m at gmail.com> wrote:> Hi list, > ? ? ? ? ?I have the following code to compute the acf of a time series > acfresid <- acf(residfit), where residfit is the series > when I type acfresid at the prompt the follwoing is displayed > > Autocorrelations of series ?residfit?, by lag > > 0.0000 0.0833 0.1667 0.2500 0.3333 0.4167 0.5000 0.5833 0.6667 0.7500 0.8333 > > ?1.000 -0.015 ?0.010 ?0.099 ?0.048 -0.014 -0.039 -0.019 ?0.040 ?0.018 ?0.042 > > 0.9167 1.0000 1.0833 1.1667 1.2500 1.3333 1.4167 1.5000 1.5833 1.6667 1.7500 > > ?0.078 -0.029 ?0.028 -0.016 -0.021 -0.109 ?0.000 -0.038 -0.006 ?0.015 -0.032 > > 1.8333 1.9167 2.0000 2.0833 > -0.002 ?0.014 -0.226 -0.030 > Residfit is a timeseries object at monthly interval (0.0833), Here I > understand R computed the correlation at lags 0 to 2 years. > > What is surprising to me is > if I type acfresidfit at the prompt the following is displayed > > Autocorrelations of series ?residfit?, by lag > > ? ? 0 ? ? ?1 ? ? ?2 ? ? ?3 ? ? ?4 ? ? ?5 ? ? ?6 ? ? ?7 ? ? ?8 ? ? ?9 ? ? 10 > > ?1.000 -0.004 ?0.011 ?0.041 -0.056 ?0.019 -0.052 -0.027 -0.008 -0.012 -0.034 > > ? ?11 ? ? 12 ? ? 13 ? ? 14 ? ? 15 ? ? 16 ? ? 17 ? ? 18 ? ? 19 ? ? 20 ? ? 21 > > ?0.024 -0.005 ?0.006 -0.045 ?0.031 -0.035 -0.011 -0.021 -0.020 -0.010 -0.007 > > ? ?22 ? ? 23 ? ? 24 ? ? 25 > -0.038 ?0.017 ?0.051 ?0.038 > >From the header I understand both are autocorrelation computed at the same > lags. but the correlations are different > > where am I going wrong and which is the correct one. > > file residfit is also attached(filename-fileree2_test_out.txt) > Thanks > nuncio > -- > Nuncio.M > Research Scientist > National Center for Antarctic and Ocean research > Head land Sada > Vasco da Gamma > Goa-403804 > > ______________________________________________ > R-help at r-project.org mailing list > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide http://www.R-project.org/posting-guide.html > and provide commented, minimal, self-contained, reproducible code. > >-- Joris Meys Statistical consultant Ghent University Faculty of Bioscience Engineering Department of Applied mathematics, biometrics and process control tel : +32 9 264 59 87 Joris.Meys at Ugent.be ------------------------------- Disclaimer : http://helpdesk.ugent.be/e-maildisclaimer.php