Dear all, I have a couple of questions concerning glmm in the package repeated. After fitting a binomial glmm, summary(model) gives a very different result from anova(model, test="Chisq"). Why is that? Are both reliable for glmm, or is it something with my data/model? The anova call produces a warning message ("non-integer #successes in a binomial glm"). Also, what does the sd term represent? The calls and outputs follow below. (R 1.2.1 on SuSE Linux 6.3, repeated 0.9, rmutil 0.9). I would appreciate your help, Hakan Haggstrom > ksvm2 #The data frame no yes Pop Prey Poptype 1 2 17 M C NoPA 2 8 11 S C NoPA 3 11 9 M PA NoPA 4 9 10 S PA NoPA 5 14 5 K C PA 6 8 10 V C PA 7 13 10 K PA PA 8 10 10 V PA PA > > ksvm2.glmm <- glmm(cbind(yes,no) ~ Prey*Poptype, nest=Pop, family=binomial, data=ksvm2) > summary(ksvm2.glmm) Coefficients: Estimate Std. Error z value Pr(>|z|) (Intercept) 1.03026 0.36810 2.799 0.00513 ** PreyPA -1.08177 0.48806 -2.216 0.02666 * PoptypePA -1.41323 0.49769 -2.840 0.00452 ** sd 0.05281 0.16541 0.319 0.74952 PreyPA:PoptypePA 1.32561 0.66631 1.989 0.04665 * > anova(ksvm2.glmm,test="Chisq") Analysis of Deviance Table Df Deviance Resid. Df Resid. Dev P(>|Chi|) NULL 7 19.0232 Prey -71 1.5022 78 17.5210 1.0000 Poptype 1 4.6068 77 12.9143 0.0318 sd 1 0.0958 76 12.8185 0.7569 Prey:Poptype 73 3.9771 3 8.8414 1.0000 Warning messages: 1: non-integer #successes in a binomial glm! in: eval(expr, envir, enclos) 2: non-integer #successes in a binomial glm! in: eval(expr, envir, enclos) 3: non-integer #successes in a binomial glm! in: eval(expr, envir, enclos) -.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.- r-help mailing list -- Read http://www.ci.tuwien.ac.at/~hornik/R/R-FAQ.html Send "info", "help", or "[un]subscribe" (in the "body", not the subject !) To: r-help-request at stat.math.ethz.ch _._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._