The patch below fixes the NChisquare documentation problem that I've
been mentioning for some time now.
NOTE: There is one DEQN where the LaTeX part contains real LaTeX code,
because I did not see how to get a sum sign (and a roman math font)
otherwise. Seems to work, though ... MARTIN?
-k
**********************************************************************
*** src/library/base/man/NChisquare.orig Sat Jul 26 10:50:54 1997
--- src/library/base/man/NChisquare Sat Jul 26 11:26:23 1997
***************
*** 1,26 ****
TITLE(NChisquare @@ The Non-Central Chi-Square Distribution)
USAGE(
! dnchisq(x, df)
! pnchisq(x, df)
! qnchisq(x, df)
! rnchisq(x, df)
)
ALIAS(dnchisq)
ALIAS(pnchisq)
ALIAS(qnchisq)
ALIAS(rnchisq)
DESCRIPTION(
! These functions provide information about the non-central
! chi-square distribution with LANG(df) degrees of freedom.
! LANG(dnchisq) gives the density, LANG(pnchisq) gives the
! distribution function LANG(qnchisq) gives the quantile
function and LANG(rnchisq) generates random deviates.
PARA
! The non-central chi-square distribution with EQN(n)
! degrees-of-freedom has density
! DEQN(f(x) ! OVER(1 @@ SUP(2@@n/2) greekGamma (n/2))
! SUP(x@@n/2-1) SUP(e@@-x/2)
! @@f(x) = 1 / (2^(n/2) Gamma(n/2)) x^(n/2-1) e^-x/2)
for EQN(x GE 0).
)
--- 1,28 ----
TITLE(NChisquare @@ The Non-Central Chi-Square Distribution)
USAGE(
! dnchisq(x, df, lambda)
! pnchisq(x, df, lambda)
! qnchisq(x, df, lambda)
! rnchisq(x, df, lambda)
)
ALIAS(dnchisq)
ALIAS(pnchisq)
ALIAS(qnchisq)
ALIAS(rnchisq)
DESCRIPTION(
! These functions provide information about the non-central chi-square
! distribution with LANG(df) degrees of freedom and non-centrality
! parameter LANG(lambda). LANG(dnchisq) gives the density, LANG(pnchisq)
! gives the distribution function LANG(qnchisq) gives the quantile
function and LANG(rnchisq) generates random deviates.
PARA
! The non-central chi-square distribution with EQN(df) degrees of freedom
! and non-centrality parameter EQN(greeklambda) has density
! DEQN(f(x) = SUP(e @@ -\lambda / 2)
! \sum_{r=0}^\infty \frac{\lambda^r}{2^r r!} \mathrm{pchisq}(x, df + 2r)
! @@
! f(x) = exp(-lambda/2) SUM_{r=0}^infty (lambda^r / 2^r r!)
! pchisq(x, df + 2r)
! )
for EQN(x GE 0).
)
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
r-devel mailing list -- Read http://www.ci.tuwien.ac.at/~hornik/R/R-FAQ.html
Send "info", "help", or "[un]subscribe"
(in the "body", not the subject !) To:
r-devel-request@stat.math.ethz.ch
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-