I have a dataset, example of the data is shown below: Grouped Data: drain_irr ~ irr | crop Year decades crop irrisystem drain_irr irr 1310 1995-96 1990s Citrus various 0.400 9.021 1311 1995-96 1990s Citrus drip 0.541 6.468 1312 1995-96 1990s Citrus overhead 3.308 11.336 1313 1995-96 1990s Citrus undertree 0.400 9.050 1314 1995-96 1990s Citrus undertree 3.485 10.304 1315 1995-96 1990s Citrus undertree 0.400 3.423 Grouped Data: drain_irr ~ irr | crop Year decades crop irrisystem drain_irr irr 3605 2002-03 2000s WineGrapes drip 0.24738 5.89 3606 2002-03 2000s WineGrapes drip 0.24738 5.89 3607 2002-03 2000s WineGrapes drip 0.20230 5.95 3608 2002-03 2000s WineGrapes drip 0.20230 5.95 3609 2002-03 2000s WineGrapes drip 0.76890 6.99 3610 2002-03 2000s WineGrapes drip 0.76890 6.99 I am using nlsList to fit a model drain_irr~a0*irr^b0 for the crop factor the output of which is shown below: Call: Model: drain_irr ~ A0 * irr^B0 | crop Data: nswdat Coefficients: A0 Estimate Std. Error t value Pr(>|t|) Other 0.00017782 0.00046336 0.38376 6.4108e-01 WineGrapes 0.00891031 0.00240466 3.70544 7.6315e-05 Citrus 0.00142073 0.00092889 1.52949 3.1404e-02 DriedVine 0.03829533 0.01323868 2.89269 8.2945e-02 B0 Estimate Std. Error t value Pr(>|t|) Other 3.9132 1.01438 3.8577 1.3867e-02 WineGrapes 2.5510 0.12029 21.2068 1.9062e-46 Citrus 3.0921 0.25447 12.1509 1.3566e-21 DriedVine 1.9547 0.14723 13.2762 4.3579e-09 Residual standard error: 0.53998 on 195 degrees of freedom A plot of the data using qplot from the ggplot2 package gives the follow relationship However, when I use augPred to eg augPred(nswdat.nls00) it gives the following graphic While citrus and Other are OK compared with the qplot of the raw data, Winegrape and DriedVine are clearly not. Have others encountered this problem with augPred? I am using R-2.11.1 under Windows XP Tsch?? Tony Meissner Principal Scientist - Monitoring Department for Water | Level 3 28 Vaughan Terrace Berri SA 5343 T 8595 2209 | M 0401 124 971 E tony.meissner at sa.gov.au<mailto:tony.meissner at sa.gov.au> Mon | Tue | Wed | Thurs | Fri www.waterforgood.sa.gov.au<http://www.waterforgood.sa.gov.au/> | www.sa.gov.au<http://www.sa.gov.au/> The information in this e-mail may be confidential and/or legally privileged. Use or disclosure of the information by anyone other than the intended recipient is prohibited and may be unlawful. "Imagine" ?
I have a dataset, example of the data is shown below: Grouped Data: drain_irr ~ irr | crop Year decades crop irrisystem drain_irr irr 1310 1995-96 1990s Citrus various 0.400 9.021 1311 1995-96 1990s Citrus drip 0.541 6.468 1312 1995-96 1990s Citrus overhead 3.308 11.336 1313 1995-96 1990s Citrus undertree 0.400 9.050 1314 1995-96 1990s Citrus undertree 3.485 10.304 1315 1995-96 1990s Citrus undertree 0.400 3.423 Grouped Data: drain_irr ~ irr | crop Year decades crop irrisystem drain_irr irr 3605 2002-03 2000s WineGrapes drip 0.24738 5.89 3606 2002-03 2000s WineGrapes drip 0.24738 5.89 3607 2002-03 2000s WineGrapes drip 0.20230 5.95 3608 2002-03 2000s WineGrapes drip 0.20230 5.95 3609 2002-03 2000s WineGrapes drip 0.76890 6.99 3610 2002-03 2000s WineGrapes drip 0.76890 6.99 I am using nlsList to fit a model drain_irr~a0*irr^b0 for the crop factor the output of which is shown below: Call: Model: drain_irr ~ A0 * irr^B0 | crop Data: nswdat Coefficients: A0 Estimate Std. Error t value Pr(>|t|) Other 0.00017782 0.00046336 0.38376 6.4108e-01 WineGrapes 0.00891031 0.00240466 3.70544 7.6315e-05 Citrus 0.00142073 0.00092889 1.52949 3.1404e-02 DriedVine 0.03829533 0.01323868 2.89269 8.2945e-02 B0 Estimate Std. Error t value Pr(>|t|) Other 3.9132 1.01438 3.8577 1.3867e-02 WineGrapes 2.5510 0.12029 21.2068 1.9062e-46 Citrus 3.0921 0.25447 12.1509 1.3566e-21 DriedVine 1.9547 0.14723 13.2762 4.3579e-09 Residual standard error: 0.53998 on 195 degrees of freedom A plot of the data using qplot from the ggplot2 package gives the follow relationship (nswdat.crop.jpeg) However, when I use augPred to eg augPred(nswdat.nls00) it gives the following graphic (nswdatcrop.AugP.jpeg) While citrus and Other are OK compared with the qplot of the raw data, Winegrape and DriedVine are clearly not. Have others encountered this problem with augPred? I am using R-2.11.1 under Windows XP Tsch?? Tony Meissner Principal Scientist - Monitoring Department for Water | Level 3 28 Vaughan Terrace Berri SA 5343 T 8595 2209 | M 0401 124 971 E tony.meissner at sa.gov.au<mailto:tony.meissner at sa.gov.au> Mon | Tue | Wed | Thurs | Fri www.waterforgood.sa.gov.au<http://www.waterforgood.sa.gov.au/> | www.sa.gov.au<http://www.sa.gov.au/> The information in this e-mail may be confidential and/or legally privileged. Use or disclosure of the information by anyone other than the intended recipient is prohibited and may be unlawful. "Imagine" ?