similar to: non-finite finite-difference value[]

Displaying 20 results from an estimated 1000 matches similar to: "non-finite finite-difference value[]"

2010 Apr 12
1
zerinfl() vs. Stata's zinb
Hello, I am working with zero inflated models for a current project and I am getting wildly different results from R's zeroinfl(y ~ x, dist="negbin") command and Stata's zinb command. Does anyone know why this may be? I find it odd considering that zeroinfl(y ~ x, dist="poisson") gives identical to output to Stata's zip function. Thanks, --david [[alternative
2012 Oct 14
2
Poisson Regression: questions about tests of assumptions
I would like to test in R what regression fits my data best. My dependent variable is a count, and has a lot of zeros. And I would need some help to determine what model and family to use (poisson or quasipoisson, or zero-inflated poisson regression), and how to test the assumptions. 1) Poisson Regression: as far as I understand, the strong assumption is that dependent variable mean = variance.
2009 Mar 22
1
Multiple Comparisons for (multicomp - glht) for glm negative binomial (glm.nb)
Hi I have some experimental data where I have counts of the number of insects collected to different trap types rotated through 5 different location (variable -location), 4 different chemical attractants [A, B, C, D] were applied to the traps (variable - semio) and all were trialled at two different CO2 release rates [1, 2] (variable CO2) I also have a selection of continuous variables
2011 May 23
1
Interpreting the results of the zero inflated negative binomial regression
Hi, I am new to R and has been depending mostly on the online tutotials to learn R. I have to deal with zero inflated negative binomial distribution. I am however unable to understand the following example from this link http://www.ats.ucla.edu/stat/r/dae/zinbreg.htm The result gives two blocks. *library(pscl) zinb<-zeroinfl(count ~ child + camper | persons, dist = "negbin", EM =
2010 Mar 03
1
Zero inflated negative binomial
Hi all, I am running the following model: > glm89.nb <- glm.nb(AvGUD ~ Year*Trt*Micro) where Year has 3 levels, Trt has 2 levels and Micro has 3 levels. However when I run it has a zero inflated negative binomial (as I have lots of zeros) I get the below error message: > Zinb <- zeroinfl(AvGUD ~ Year*Trt*Micro |1, data = AvGUD89, dist = "negbin") Error in optim(fn =
2012 Dec 10
1
Marginal effects of ZINB models
Dear all, I am modeling the incidence of recreational anglers along a stretch of coastline, and with a vary large proportion of zeros (>80%) have chosen to use a zero inflated negative binomial (ZINB) distribution. I am using the same variables for both parts of the model, can anyone help me with R code to compute overall marginal effects of each variable? My model is specified as follows:
2012 Jul 13
1
Vuong test
Dear All, I am using the function vuong from pscl package to compare 2 non nested models NB1 (negative binomial I ) and Zero-inflated model. NB1 <-  glm(, , family = quasipoisson), it is an object of class: "glm" "lm" zinb <- zeroinfl( dist = "negbin") is an object of class: "zeroinfl"   when applying vuong function I get the following: vuong(NB1,
2010 Jun 08
2
Please help me
Dear Mr. or Ms.,   I used the R-software to run the zero-inflatoin negative binomial model (zeroinfl()) .   Firstly, I introduced one dummy variable to the model as an independent variable, and I got the estimators of parameters. But the results are not satisfied to me. So I introduced three dummy variables to the model. but I could not get the results. And the error message is
2009 Nov 29
1
Convergence problem with zeroinfl() and hurdle() when interaction term added
Hello, I have a data frame with 1425 observations, 539 of which are zeros. I am trying to fit the following ZINB: f3<-formula(Nbr_Abs~ Zone * Year + Source) ZINB2<-zeroinfl(f3, dist="negbin", link= "logit", data=TheData, offset=log(trans.area), trace=TRUE) Zone is a factor with 4 levels, Year a factor with 27 levels, and Source a factor with 3 levels. Nbr_Abs is counts
2010 Feb 11
1
Zero-inflated Negat. Binom. model
Dear R crew: I am sorry this question has been posted before, but I can't seem to solve this problem yet. I have a simple dataset consisting of two variables: cestode intensity and chick size (defined as CAPI). Intensity is a count and clearly overdispersed, with way too many zeroes. I'm interested in looking at the association between these two variables, i.e. how well does chick
2010 Feb 04
1
Zero inflated negat. binomial model
Dear R crew: I think I am in the right mailing list. I have a very simple dataset consisting of two variables: cestode intensity and chick size (defined as CAPI). Intensity is clearly overdispersed, with way too many zeroes. I'm interested in looking at the association between these two variables, i.e. how well does chick size predict tape intensity? I fit a zero inflated negat. binomial
2008 Sep 14
0
Question on glm.nb vs zeroinfl vs hurdle models
Good afternoon, I?m in need of an advice regarding a proper use of glm.nb, zeroinfl or hurdle with my dataframe. I can not provide a self-contained example, since I need an advice on this current dataset and its ?contradictory? results. So.... i have a dataset which contains 1309 cases and 11 variables, highly right-skewed and heavily zeroinflated (with over 1100 cases that have 0 value
2009 Oct 23
3
opposite estimates from zeroinfl() and hurdle()
Dear all, A question related to the following has been asked on R-help before, but I could not find any answer to it. Input will be much appreciated. I got an unexpected sign of the "slope" parameter associated with a covariate (diam) using zeroinfl(). It led me to compare the estimates given by zeroinfl() and hurdle(): The (significant) negative estimate here is surprising, given
2010 Feb 14
2
Estimated Standard Error for Theta in zeroinfl()
Dear R Users, When using zeroinfl() function to fit a Zero-Inflated Negative Binomial (ZINB) model to a dataset, the summary() gives an estimate of log(theta) and its standard error, z-value and Pr(>|z|) for the count component. Additionally, it also provided an estimate of Theta, which I believe is the exp(estimate of log(theta)). However, if I would like to have an standard error of Theta
2010 Jun 22
1
Subject: Re ZINB by Newton Raphson??
I have not included the previous postings because they came out very strangely on my mail reader. However, the question concerned the choice of minimizer for the zeroinfl() function, which apparently allows any of the current 6 methods of optim() for this purpose. The original poster wanted to use Newton-Raphson. Newton-Raphson (or just Newton for simplicity) is commonly thought to be the
2008 Dec 16
1
Prediction intervals for zero inflated Poisson regression
Dear all, I'm using zeroinfl() from the pscl-package for zero inflated Poisson regression. I would like to calculate (aproximate) prediction intervals for the fitted values. The package itself does not provide them. Can this be calculated analyticaly? Or do I have to use bootstrap? What I tried until now is to use bootstrap to estimate these intervals. Any comments on the code are welcome.
2011 Jun 01
3
Zero-inflated regression models: predicting no 0s
Hi all, First post for me here, but I have been reading on the forum for almost two years now. Thanks to everyone who contributed btw! I have a dataset of 4000 observations of count of a mammal and I am trying to predict abundance from a inflated-zero model as there is quite a bit of zeros in the response variable. I have tried multiple options, but I might do something wrong as every
2010 Jun 21
0
Re ZINB by Newton Raphson??
Dear Mr.Zeileis & all. (1)     Thx for your reply. Yes, I am talk about the function zeroinfl() from the package "pscl". I want to use Newton Raphson to get parameter             estimation ZINB, so I try this: ----------------------------------------------------------------------------------------------------------------------------------         > zinb <- zeroinfl(y
2018 Apr 09
2
Warning en modelo ZINB
Buenas tardes, Estoy estimando un modelo binomial negativo de ceros inflados (ZINB) utilizando el comando zeroinfl() del paquete pscl. Al ejecutarlo me da el siguiente aviso: Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred ¿Sabéis que significa y si puedo usar el modelo aún con ese aviso? ¿Los coeficientes son fiables? Muchas gracias, Miriam
2011 Dec 26
2
Zero-inflated Negative Binomial Error
Hello, I am having a problem with the zero-inflated negative binomial (package pscl). I have 6 sites with plant populations, and I am trying to model the number of seeds produced as a function of their size and their site. There are a lot of zero's because many of my plants get eaten before flowering, thereby producing 0 seeds, and that varies by site. Because of that and because the