similar to: zerinfl() vs. Stata's zinb

Displaying 20 results from an estimated 1000 matches similar to: "zerinfl() vs. Stata's zinb"

2012 Dec 10
1
Marginal effects of ZINB models
Dear all, I am modeling the incidence of recreational anglers along a stretch of coastline, and with a vary large proportion of zeros (>80%) have chosen to use a zero inflated negative binomial (ZINB) distribution. I am using the same variables for both parts of the model, can anyone help me with R code to compute overall marginal effects of each variable? My model is specified as follows:
2008 Dec 16
1
Prediction intervals for zero inflated Poisson regression
Dear all, I'm using zeroinfl() from the pscl-package for zero inflated Poisson regression. I would like to calculate (aproximate) prediction intervals for the fitted values. The package itself does not provide them. Can this be calculated analyticaly? Or do I have to use bootstrap? What I tried until now is to use bootstrap to estimate these intervals. Any comments on the code are welcome.
2011 May 23
1
Interpreting the results of the zero inflated negative binomial regression
Hi, I am new to R and has been depending mostly on the online tutotials to learn R. I have to deal with zero inflated negative binomial distribution. I am however unable to understand the following example from this link http://www.ats.ucla.edu/stat/r/dae/zinbreg.htm The result gives two blocks. *library(pscl) zinb<-zeroinfl(count ~ child + camper | persons, dist = "negbin", EM =
2012 Jul 13
1
Vuong test
Dear All, I am using the function vuong from pscl package to compare 2 non nested models NB1 (negative binomial I ) and Zero-inflated model. NB1 <-  glm(, , family = quasipoisson), it is an object of class: "glm" "lm" zinb <- zeroinfl( dist = "negbin") is an object of class: "zeroinfl"   when applying vuong function I get the following: vuong(NB1,
2010 Jun 08
2
Please help me
Dear Mr. or Ms.,   I used the R-software to run the zero-inflatoin negative binomial model (zeroinfl()) .   Firstly, I introduced one dummy variable to the model as an independent variable, and I got the estimators of parameters. But the results are not satisfied to me. So I introduced three dummy variables to the model. but I could not get the results. And the error message is
2018 Apr 09
2
Warning en modelo ZINB
Buenas tardes, Estoy estimando un modelo binomial negativo de ceros inflados (ZINB) utilizando el comando zeroinfl() del paquete pscl. Al ejecutarlo me da el siguiente aviso: Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred ¿Sabéis que significa y si puedo usar el modelo aún con ese aviso? ¿Los coeficientes son fiables? Muchas gracias, Miriam
2006 Jan 24
1
non-finite finite-difference value[]
Dear R-helpers, running a zeroinflated model of the following type: zinb = zeroinfl(count=response ~., x = ~ . - response, z = ~. - response, dist = "negbin", data = t.data, trace = TRUE) generates the following message: Zero-Inflated Count Model Using logit to model zero vs non-zero Using Negative Binomial for counts dependent variable y: Y 0 1 2 3 359 52 7 3 generating
2010 Jun 22
1
Subject: Re ZINB by Newton Raphson??
I have not included the previous postings because they came out very strangely on my mail reader. However, the question concerned the choice of minimizer for the zeroinfl() function, which apparently allows any of the current 6 methods of optim() for this purpose. The original poster wanted to use Newton-Raphson. Newton-Raphson (or just Newton for simplicity) is commonly thought to be the
2010 Mar 03
1
Zero inflated negative binomial
Hi all, I am running the following model: > glm89.nb <- glm.nb(AvGUD ~ Year*Trt*Micro) where Year has 3 levels, Trt has 2 levels and Micro has 3 levels. However when I run it has a zero inflated negative binomial (as I have lots of zeros) I get the below error message: > Zinb <- zeroinfl(AvGUD ~ Year*Trt*Micro |1, data = AvGUD89, dist = "negbin") Error in optim(fn =
2012 Apr 26
2
Lambert (1992) simulation
Hi, I am trying to replicate Lambert (1992)'s simulation with zero-inflated Poisson models. The citation is here: @article{lambert1992zero, Author = {Lambert, D.}, Journal = {Technometrics}, Pages = {1--14}, Publisher = {JSTOR}, Title = {Zero-inflated {P}oisson regression, with an application to defects in manufacturing}, Year = {1992}} Specifically I am trying to recreate Table 2. But my
2009 Nov 29
1
Convergence problem with zeroinfl() and hurdle() when interaction term added
Hello, I have a data frame with 1425 observations, 539 of which are zeros. I am trying to fit the following ZINB: f3<-formula(Nbr_Abs~ Zone * Year + Source) ZINB2<-zeroinfl(f3, dist="negbin", link= "logit", data=TheData, offset=log(trans.area), trace=TRUE) Zone is a factor with 4 levels, Year a factor with 27 levels, and Source a factor with 3 levels. Nbr_Abs is counts
2018 Apr 09
2
Warning en modelo ZINB
Muchas gracias por la respuesta. He mirado y los coeficientes no son altos pero sí tengo una gran cantidad de ceros en la variable dependiente (más del 90%). Sin embargo, al incluir otro tipo de variables independientes no me da ese aviso, dejando la misma variable dependiente. ¿Cómo podría utilizar stan/rstan de forma sencilla para diagnosticar el modelo? Muchas gracias El Lun, 9 de Abril de
2018 Apr 09
3
Warning en modelo ZINB
¿Quieres decir que para un nivel de una variable categorica todas las observaciones de la variable respuesta sean ceros? Gracias El Lun, 9 de Abril de 2018, 19:59, Carlos J. Gil Bellosta escribió: > ¿Podría ser que para algún nivel de alguna variable independiente > categórica solo hubiese ceros? En ese caso, casi seguro, aparecería ese > tipo de warning. > > El lun., 9 abr. 2018 a
2024 Jan 04
1
Obtaining a value of pie in a zero inflated model (fm-zinb2)
Are you referring to the zeroinfl() function in the countreg package? If so, I think predict(fm_zinb2, type = "zero", newdata = some.new.data) will give you pi for each combination of covariate values that you provide in some.new.data where pi is the probability to observe a zero from the point mass component. As to your second question, I'm not sure that's possible, for any
2010 Jun 21
0
Re ZINB by Newton Raphson??
Dear Mr.Zeileis & all. (1)     Thx for your reply. Yes, I am talk about the function zeroinfl() from the package "pscl". I want to use Newton Raphson to get parameter             estimation ZINB, so I try this: ----------------------------------------------------------------------------------------------------------------------------------         > zinb <- zeroinfl(y
2010 Jun 21
1
ZINB by Newton Raphson??
Dear all.. I have a respon variable y. Predictor variable are x1, x2, x3, x4, x5 (1) What is the syntax to get paramater estimation of ZINB Model by Newton Raphson (not BFGS) (2) What syntax to plot probability of observed & predicted of ZINB Thx. Regards Krist. [[alternative HTML version deleted]]
2018 Apr 09
2
Warning en modelo ZINB
Hola de nuevo Carlos, he probado a quitar esa variable categórica y me sigue dando el aviso... El Lun, 9 de Abril de 2018, 20:17, Carlos J. Gil Bellosta escribió: > Si, creo que el motivo del warning puede ser ese. Es hipotético, pero > plausible. Sobre todo cuando tienes más de un 90% de ceros. > > El coeficiente de ese nivel para el modelo de la mixtura (ceros vs > binomial >
2024 Jan 04
1
Obtaining a value of pie in a zero inflated model (fm-zinb2)
I am running a zero inflated regression using the zeroinfl function similar to the model below: fm_zinb2 <- zeroinfl(art ~ . | ., data = bioChemists, dist = "poisson") summary(fm_zinb2) I have three questions: 1) How can I obtain a value for the parameter pie, which is the fraction of the population that is in the zero inflated model vs the fraction in the count model? 2) For
2010 Feb 14
2
Estimated Standard Error for Theta in zeroinfl()
Dear R Users, When using zeroinfl() function to fit a Zero-Inflated Negative Binomial (ZINB) model to a dataset, the summary() gives an estimate of log(theta) and its standard error, z-value and Pr(>|z|) for the count component. Additionally, it also provided an estimate of Theta, which I believe is the exp(estimate of log(theta)). However, if I would like to have an standard error of Theta
2012 Oct 14
2
Poisson Regression: questions about tests of assumptions
I would like to test in R what regression fits my data best. My dependent variable is a count, and has a lot of zeros. And I would need some help to determine what model and family to use (poisson or quasipoisson, or zero-inflated poisson regression), and how to test the assumptions. 1) Poisson Regression: as far as I understand, the strong assumption is that dependent variable mean = variance.