similar to: Random effects with glm()

Displaying 20 results from an estimated 400 matches similar to: "Random effects with glm()"

2006 Jan 25
1
About lmer output
Dear R users: I am using lmer fo fit binomial data with a probit link function: > fer_lmer_PQL<-lmer(fer ~ gae + ctipo + (1|perm) -1, + family = binomial(link="probit"), + method = 'PQL', + data = FERTILIDAD, + msVerbose= True) The output look like this: > fer_lmer_PQL Generalized linear mixed model fit
2004 Jul 19
3
why won't rq draw lines?
I've been trying to draw quantile linear regression lines across a scatterplot of my data using attach(forrq) plot(PREGNANT,DAY8,xlab="pregnant EPDS",ylab="postnatal EPDS",cex=.5) taus <- c(.05,.1,.25,.75,.9,.95) xx <- seq(min(PREGNANT),max(PREGNANT),100) for(tau in taus){ f <- coef(rq(DAY8~PREGNANT,tau=tau)) yy <-
2004 Nov 01
1
GLMM
Hello, I have a problem concerning estimation of GLMM. I used methods from 3 different packages (see program). I would expect similar results for glmm and glmmML. The result differ in the estimated standard errors, however. I compared the results to MASS, 4th ed., p. 297. The results from glmmML resemble the given result for 'Numerical integration', but glmm output differs. For the
2011 Jun 22
2
error using glmmML()
Dear all, This question is basic but I am stumped. After running the below, I receive the message: "non-integer #successes in a binomial glm!" model1 <- glmmML(y~Brood.Size*Density+Date.Placed+Species+Placed.Emerging+Year+rate.of.parperplot, data = data, cluster= data$Patch, family=binomial(link="logit")) My response variable is sex ratio, and I have learned quickly not
2004 Jun 14
1
glmmML package
I'm trying to use the glmmML package on a Windows machine. When I try to install the package, I get the message: > {pkg <- select.list(sort(.packages(all.available = TRUE))) + if(nchar(pkg)) library(pkg, character.only=TRUE)} Error in dyn.load(x, as.logical(local), as.logical(now)) : unable to load shared library
2010 May 13
1
What's data() for?
Hi there, >library(faraway) >pima pregnant glucose diastolic triceps insulin bmi diabetes age test 1 6 148 72 35 0 33.6 0.627 50 1 2 1 85 66 29 0 26.6 0.351 31 0 >data(pima) >pima pregnant glucose diastolic triceps insulin bmi diabetes age test 1 6 148 72 35 0 33.6
2004 Apr 27
3
se.fit in predict.glm
Hi Folks, I'm seeking confirmation of something which is probably true but which I have not managed to find in the documentation. I have a binary response y={0.1} and a variable x and have fitted a probit response to the data with f <- glm( y~x, family=binomial(link=probit) ) and then, with a specified set of x-value X I have used the predict.glm function as p <- predict( f, X,
2006 Mar 08
1
Want to fit random intercept in logistic regression (testing lmer and glmmML)
Greetings. Here is sample code, with some comments. It shows how I can simulate data and estimate glm with binomial family when there is no individual level random error, but when I add random error into the linear predictor, I have a difficult time getting reasonable estimates of the model parameters or the variance component. There are no clusters here, just individual level responses, so
2017 Feb 09
3
Ancient C /Fortran code linpack error
In my package 'glmmML' I'm using old C code and linpack in the optimizing procedure. Specifically, one part of the code looks like this: F77_CALL(dpoco)(*hessian, &bdim, &bdim, &rcond, work, info); if (*info == 0){ F77_CALL(dpodi)(*hessian, &bdim, &bdim, det, &job); ........ This usually works OK, but with an ill-conditioned data
2006 Jan 02
2
mixed effects models - negative binomial family?
Hello all, I would like to fit a mixed effects model, but my response is of the negative binomial (or overdispersed poisson) family. The only (?) package that looks like it can do this is glmm.ADMB (but it cannot run on Mac OS X - please correct me if I am wrong!) [1] I think that glmmML {glmmML}, lmer {Matrix}, and glmmPQL {MASS} do not provide this "family" (i.e. nbinom, or
2006 Oct 06
2
Fitting a cumulative gaussian
Dear R-Experts, I was wondering how to fit a cumulative gaussian to a set of empirical data using R. On the R website as well as in the mail archives, I found a lot of help on how to fit a normal density function to empirical data, but unfortunately no advice on how to obtain reasonable estimates of m and sd for a gaussian ogive function. Specifically, I have data from a psychometric function
2007 May 08
3
ordered logistic regression with random effects. Howto?
I'd like to estimate an ordinal logistic regression with a random effect for a grouping variable. I do not find a pre-packaged algorithm for this. I've found methods glmmML (package: glmmML) and lmer (package: lme4) both work fine with dichotomous dependent variables. I'd like a model similar to polr (package: MASS) or lrm (package: Design) that allows random effects. I was
2011 Jan 28
1
node reboot during rsync
Hello One of our 5 nodes cluster has rebooted during a rsync process between two ocfs2 v1.6 volumes, both mounted on this node. All nodes have the same OS, kernel, ocfs2 versions: Oracle Enterprise Linux 5.5 Oracle Kernel 2.6.32-100.0.19.el5 Attached is the netconsole log for this node (9), and the log for some other node (1) on which some httpd processes has entered in 'D' state
2010 Jul 09
1
Appropriate tests for logistic regression with a continuous predictor variable and Bernoulli response variable
I have a data with binary response variable, repcnd (pregnant or not) and one predictor continuous variable, svl (body size) as shown below. I did Hosmer-Lemeshow test as a goodness of fit (as suggested by a kind “R-helper” previously). To test whether the predictor (svl, or body size) has significant effect on predicting whether or not a female snake is pregnant, I used the differences between
2017 Feb 09
3
Ancient C /Fortran code linpack error
> > On 9 Feb 2017, at 16:00, G?ran Brostr?m <goran.brostrom at umu.se> wrote: > > > > In my package 'glmmML' I'm using old C code and linpack in the optimizing procedure. Specifically, one part of the code looks like this: > > > > F77_CALL(dpoco)(*hessian, &bdim, &bdim, &rcond, work, info); > > if (*info == 0){ > >
2005 Dec 15
1
generalized linear mixed model by ML
Dear All, I wonder if there is a way to fit a generalized linear mixed models (for repeated binomial data) via a direct Maximum Likelihood Approach. The "glmm" in the "repeated" package (Lindsey), the "glmmPQL" in the "MASS" package (Ripley) and "glmmGIBBS" (Myle and Calyton) are not using the full maximum likelihood as I understand. The
2006 Sep 04
1
Problem with Variance Components (and general glmm confusion)
Dear list, I am having some problems with extracting Variance Components from a random-effects model: I am running a simple random-effects model using lme: model<-lme(y~1,random=~1|groupA/groupB) which returns the output for the StdDev of the Random effects, and model AIC etc as expected. Until yesterday I was using R v. 2.0, and had no problem in calling the variance components of the
2008 Sep 15
1
any package to do generalized linear mixed model?
I checked GlmmML package. However, it can only do binomial and poisson distribution. How about others such as gamma or neg binomial? Thank you so much! wensui
2004 May 28
1
Pr(>|z|) in lme4
Dear List, I am struggling understanding S4 classes. For example, when GLMM summary(glmmML( whatever)) outputs the following line: Estimate Std. Error DF z value Pr(>|z|) (Intercept) 0.856 0.319 45 2.68 0.0073 How do I access the Pr column? Dieter
2006 Aug 21
1
New version of glmmML
A new version, 0.65-1, of glmmML is now on CRAN. It is a major rewrite of the inner structures, so frequent updates (bug fixes) may be expected for some time. News: * The Laplace and adaptive Gauss-Hermite approximations to the log likelihood function are fully implemented. The Laplace method is made the default. It should give results you can compare to the results from 'lmer' (for the