similar to: Overdispersed GLM

Displaying 20 results from an estimated 180 matches similar to: "Overdispersed GLM"

2002 Jun 06
1
generating overdispersed poisson & negative binomial data
I would like to try a simple parametric bootstrap, but unfortunately (stupidly?) my models are "overdispersed" gams & glms. I'm hoping for a function that generates overdispersed poisson or negative binomial data with a given mean, scale (& shape parameter). The loose definition I'm using is overdispersed poisson produces integer values with variance=const*mean &
2006 Nov 13
1
stepAIC for overdispersed Poisson
I am wondering if stepAIC in the MASS library may be used for model selection in an overdispersed Poisson situation. What I thought of doing was to get an estimate of the overdispersion parameter phi from fitting a model with all or most of the available predictors (we have a large number of observations so this should not be problematical) and then use stepAIC with scale = phi. Should this
2005 Sep 30
0
p-value for non-linear variable in overdispersed glm()
Dear all, I am fitting an nonlinear glm() using optim() by first minimising glm(resp~ var1 + var2, family=binomial, data=data)$deviance where var1= exp(-a1*dist1), and var2= exp(-a2*dist2), where a1 and a2 are parameters and dist1 and dist2 are independent variables. Next, I calculate the value of var1 (and var2) by plugging in the value of al1 (and al2) that minimises deviance, and fit
2006 Jul 10
2
about overdispersed poisson model
Dear R users I have been looking for functions that can deal with overdispersed poisson models. According to actuarial literature (England & Verall, Stochastic Claims Reserving in General Insurance , Institute of Actiuaries 2002) this can be handled through the use of quasi likelihoods instead of normal likelihoods. However, we see them frequently in this type of data, and we would like to
2005 Jun 09
0
New package aod: Analysis of Overdispersed Data
Information on package 'aod' Description: Package: aod Version: 1.1-2 Date: 2005-06-08 Title: Analysis of Overdispersed Data Author: Matthieu Lesnoff <matthieu.lesnoff at cirad.fr> and Renaud Lancelot <renaud.lancelot at cirad.fr> Maintainer: Renaud Lancelot <renaud.lancelot at cirad.fr> Depends: R (>=
2005 Jun 09
0
New package aod: Analysis of Overdispersed Data
Information on package 'aod' Description: Package: aod Version: 1.1-2 Date: 2005-06-08 Title: Analysis of Overdispersed Data Author: Matthieu Lesnoff <matthieu.lesnoff at cirad.fr> and Renaud Lancelot <renaud.lancelot at cirad.fr> Maintainer: Renaud Lancelot <renaud.lancelot at cirad.fr> Depends: R (>=
2008 Aug 17
0
Error fitting overdispersed logistic regression: package dispmod
Hi all, First, a quick thank you for R; it's amazing. I am trying to fit models for a count dataset following the overdispersed logisitic regression approach outlined in Baggerly et al. (BMC Bioinformatics, 5:144; Annotated R code is given at the end of the paper) but R is returning an error with the data below. Any help in understanding or overcoming this obstacle is appreciated.
2005 Jun 17
0
glmmADMB: Mixed models for overdispersed and zero-inflated count data in R
Dear R-users, Earlier this year I posted a message to this list regarding negative binomial mixed models in R. It was suggested that the program I had written should be turned into an R-package. This has now been done, in collaboration with David Fournier and Anders Nielsen. The R-package glmmADMB provides the following GLMM framework: - Negative binomial or Poisson responses. - Zero-inflation
2011 Aug 27
1
hopelessly overdispersed?
dear list! i am running an anlysis on proportion data using binomial (quasibinomial family) error structure. My data comprises of two continuous vars, body size and range size, as well as of feeding guild, nest placement, nest type and foragig strata as factors. I hope to model with these variables the preference of primary forests (#successes) by certain bird species. My code therefore looks
2010 Oct 25
2
Mixed-effects model for overdispersed count data?
Hi, I have to analyse the number of provisioning trips to nestlings according to a number of biological and environmental factors. I was thinking of building a mixed-effects model with species and nestid as random effects, using a Poisson distribution, but the data are overdispersed (variance/mean = 5). I then thought of using a mixed-effects model with negative binomial distribution, but I have
2003 Jan 16
3
Overdispersed poisson - negative observation
Dear R users I have been looking for functions that can deal with overdispersed poisson models. Some (one) of the observations are negative. According to actuarial literature (England & Verall, Stochastic Claims Reserving in General Insurance , Institute of Actiuaries 2002) this can be handled through the use of quasi likelihoods instead of normal likelihoods. The presence of negatives is not
2010 Jun 02
1
Problems using gamlss to model zero-inflated and overdispersed count data: "the global deviance is increasing"
Dear all, I am using gamlss (Package gamlss version 4.0-0, R version 2.10.1, Windows XP Service Pack 3 on a HP EliteBook) to relate bird counts to habit variables. However, most models fail because “the global deviance is increasing” and I am not sure what causes this behaviour. The dataset consists of counts of birds (duck) and 5 habit variables measured in the field (n= 182). The dependent
2006 Jan 30
4
Logistic regression model selection with overdispersed/autocorrelated data
I am creating habitat selection models for caribou and other species with data collected from GPS collars. In my current situation the radio-collars recorded the locations of 30 caribou every 6 hours. I am then comparing resources used at caribou locations to random locations using logistic regression (standard habitat analysis). The data is therefore highly autocorrelated and this causes Type
2010 Nov 19
2
Question on overdispersion
I have a few questions relating to overdispersion in a sex ratio data set that I am working with (note that I already have an analysis with GLMMs for fixed effects, this is just to estimate dispersion). The response variable is binomial because nestlings can only be male or female. I have samples of 1-5 nestlings from each nest (individuals within a nest are not independent, so the response
2009 Feb 16
1
Overdispersion with binomial distribution
I am attempting to run a glm with a binomial model to analyze proportion data. I have been following Crawley's book closely and am wondering if there is an accepted standard for how much is too much overdispersion? (e.g. change in AIC has an accepted standard of 2). In the example, he fits several models, binomial and quasibinomial and then accepts the quasibinomial. The output for residual
2006 Oct 12
0
Is there a function in R to evaluate the adjusted AIC or other statistc where overdispersion existed in GLMs?
Dear friends, As we all know, the usual model selection criteria(e.g.deviance,AIC...) in GLMs isn't very good for selecting the best model when overdispersion exist, so we need to adjust the corresponding statistic,see(Fitzmaurice,G.M. (1997) Model selection with overdispersed
2008 Feb 11
1
overdispersion + GAM
Hi, there are a lot of messages dealing with overdispersion, but I couldn't find anything about how to test for overdispersion. I applied a GAM with binomial distribution on my presence/absence data, and would like to check for overdispersion. Does anyone know the command? Many thanks, Anna -- View this message in context:
2004 Aug 23
0
GEE - test for overdispersion and scale adjustment
Hi there, I am using the geepack package and wish to test if my data (family=poisson) is overdispersed so that I may adjust the "scale.value" if necessary. Is there a specific function or method I should be using? Thanks for the advice, Bruce _____________________________ Bruce Catton MSc Candidate Forest Sciences University of British Columbia Vancouver, British
2007 Mar 22
0
accounting for overdispersion in poisson distribution with lmer procedure
Hello, I am analysing counts data with a mixed model using lmer procedure. I therefore use the quasipoisson distribution but I'm not sure if this is sufficient to account for overdispersion. Actually the results are not very different to what I get when specifying a poisson distribution although my data are clearly overdispersed. this my model: >model <- lmer(NB ~ T + volume +
2009 Apr 11
0
question related to fitting overdispersion count data using lmer quasipoisson
Dear R-helpers: I have a question related to fitting overdispersed count data using lmer. Basically, I simulate an overdispsed data set by adding an observation-level normal random shock into exp(....+rnorm()). Then I fit a lmer quasipoisson model. The estimation results are very off (see model output of fit.lmer.over.quasi below). Can someone kindly explain to me what went wrong? Many thanks in