Displaying 4 results from an estimated 4 matches for "var21".
Did you mean:
var1
2009 Jun 29
1
Printing output together
Hi!
I want to print the output all together with a single column name
s21<-c(1:1000);
var21<-lapply(s21,function(x){
ns<-rnorm(78,8,9);
n<-length(ns);
Mn<-mean(ns)
Sn2<-var(ns)
return(cbind(x,Mn,Sn2));
});
var21
but my code is giving me somewhat like the following
[[1]] x Mn Sn2
[1,] 1 7.86 10.56540
[[2]] x Mn Sn2
[1,] 2 8.11 7.68...
2010 May 10
2
Warning message
...nd only the first element will be used
2: In if (!freq) "Density" else "Frequency" :
the condition has length > 1 and only the first element will be used
-----------------------------------------------------------------------------------
library(mvtnorm);
s12<-c(1:1000);
var21<-lapply(s12,function(x){
rs<-rmvt(10, sigma=diag(8), df=1);
my<-mean(rs);
sy<-sqrt(var(rs))
return(cbind(my,sy))
});
data1<-do.call(rbind,var21);
dataMat<-data.frame(data1);
W<-dataMat$my;
hist(W,breaks=20,probability=T)
-------------------------------------...
2010 Jun 16
0
biglm.big.matrix: Problem with weighting
...G:\\VAR.dat", header=TRUE, type="double",
sep="\t")
Reg <- biglm.big.matrix(formula = LAannualisiert ~ 0 + VAR01 + VAR02 +
VAR03 + VAR04 + VAR05 + VAR06 +
VAR07 + VAR08 + VAR09 + VAR10 + VAR11 + VAR12 + VAR13 +
VAR14 + VAR15 + VAR16 + VAR17 + VAR18 + VAR19 +
VAR21 + VAR22 + VAR23 + VAR24 + VAR25 + VAR26 + VAR27 +
VAR28 + VAR29 + VAR30 + VAR31 + VAR32 + VAR33 + VAR34 +
VAR35 + VAR36 + VAR37 + VAR38 + VAR39, weights = ~Gewicht , data =
NIKA)
summary(Reg)
Best regards form germany, berlin.
Rahim Hajji
[[alternative HTML version dele...
2008 May 30
0
imputationlist, update, and recode
..., m=5, outname="miset")
files.allmisets <- list.files(getwd(),pattern="miset*",full=TRUE)
allmis <- imputationList(lapply(files.allmisets, read.csv))
scale1_vars <- c("var1", "var2", "var3", ... "var20")
scale2_vars <- c("var21", "var22", "var23", ... "var34")
allmis <- update(allmis, myscale1 = rowMeans(allmis[scale1_vars],
na.rm=TRUE))
allmis <- update(allmis, myscale2 = rowMeans(allmis[scale2_vars],
na.rm=TRUE))
Any help with this or general pointers about how to manage scale...