search for: var21

Displaying 4 results from an estimated 4 matches for "var21".

Did you mean: var1
2009 Jun 29
1
Printing output together
Hi!   I want to print the output all together with a single column name   s21<-c(1:1000); var21<-lapply(s21,function(x){    ns<-rnorm(78,8,9);    n<-length(ns);    Mn<-mean(ns)    Sn2<-var(ns)    return(cbind(x,Mn,Sn2)); }); var21 but my code is giving me somewhat like the following [[1]] x   Mn          Sn2   [1,] 1 7.86 10.56540 [[2]] x   Mn          Sn2   [1,] 2 8.11 7.68...
2010 May 10
2
Warning message
...nd only the first element will be used 2: In if (!freq) "Density" else "Frequency" : the condition has length > 1 and only the first element will be used ----------------------------------------------------------------------------------- library(mvtnorm); s12<-c(1:1000); var21<-lapply(s12,function(x){ rs<-rmvt(10, sigma=diag(8), df=1); my<-mean(rs); sy<-sqrt(var(rs)) return(cbind(my,sy)) }); data1<-do.call(rbind,var21); dataMat<-data.frame(data1); W<-dataMat$my; hist(W,breaks=20,probability=T) -------------------------------------...
2010 Jun 16
0
biglm.big.matrix: Problem with weighting
...G:\\VAR.dat", header=TRUE, type="double", sep="\t") Reg <- biglm.big.matrix(formula = LAannualisiert ~ 0 + VAR01 + VAR02 + VAR03 + VAR04 + VAR05 + VAR06 + VAR07 + VAR08 + VAR09 + VAR10 + VAR11 + VAR12 + VAR13 + VAR14 + VAR15 + VAR16 + VAR17 + VAR18 + VAR19 + VAR21 + VAR22 + VAR23 + VAR24 + VAR25 + VAR26 + VAR27 + VAR28 + VAR29 + VAR30 + VAR31 + VAR32 + VAR33 + VAR34 + VAR35 + VAR36 + VAR37 + VAR38 + VAR39, weights = ~Gewicht , data = NIKA) summary(Reg) Best regards form germany, berlin. Rahim Hajji [[alternative HTML version dele...
2008 May 30
0
imputationlist, update, and recode
..., m=5, outname="miset") files.allmisets <- list.files(getwd(),pattern="miset*",full=TRUE) allmis <- imputationList(lapply(files.allmisets, read.csv)) scale1_vars <- c("var1", "var2", "var3", ... "var20") scale2_vars <- c("var21", "var22", "var23", ... "var34") allmis <- update(allmis, myscale1 = rowMeans(allmis[scale1_vars], na.rm=TRUE)) allmis <- update(allmis, myscale2 = rowMeans(allmis[scale2_vars], na.rm=TRUE)) Any help with this or general pointers about how to manage scale...