Displaying 8 results from an estimated 8 matches for "sigest".
Did you mean:
digest
2005 Mar 17
1
kernlab sigest
hello,
I have the following problem setting parameter 'frac' in the sigest
function of the kernlab package.
## executing the ?sigest example:
library(kernlab)
data(spam)
srange <- sigest(type~.,data = spam)
## works fine...
## setting 'frac' explicitly
## (in this case even to the default of .25)
options(error=recover)
srange <- sigest(type~.,data = spam,...
2006 Nov 27
0
kernlab 0.9-0 on CRAN
...ing() : Kernel-based ranking method
o onlearn() : Kernel-based Online Learning algorithms for classification,
novelty detection and regression
o kpca() : Kernel Pricipal Components Analysis
o kcca() : Kernel Canonical Correlation Analysis
o kfa() : Kernel Feature Analysis
o sigest() : Hyperparameter estimation for the Gaussian and the Laplacian kernels
o inchol() : Incomplete Cholesky decomposition method
o csi() : Cholesky decomposition with side information
o ipop() : Interior point-based Quadratic Optimizer
Kernlab also includes a range of functions enabling the ea...
2006 Nov 27
0
kernlab 0.9-0 on CRAN
...ing() : Kernel-based ranking method
o onlearn() : Kernel-based Online Learning algorithms for classification,
novelty detection and regression
o kpca() : Kernel Pricipal Components Analysis
o kcca() : Kernel Canonical Correlation Analysis
o kfa() : Kernel Feature Analysis
o sigest() : Hyperparameter estimation for the Gaussian and the Laplacian kernels
o inchol() : Incomplete Cholesky decomposition method
o csi() : Cholesky decomposition with side information
o ipop() : Interior point-based Quadratic Optimizer
Kernlab also includes a range of functions enabling the ea...
2007 Oct 30
0
kernlab/ ksvm: class.weights & prob.model in binary classification
...tor(Class), class.weights= c("0"
=99, "1" =1), prob.model=T)
>
or
>
ksvm_model1<-ksvm(as.matrix(slides), as.factor(Class), class.weights=wts,
prob.model=T)
>
with the named vector wts
0 1
99 1
I get the following output:
>
Using automatic sigma estimation (sigest) for RBF or laplace kernel
Error in inherits(x, "factor") : only 0's may be mixed with negative
subscripts
In addition: Warning message:
Variable(s) `' constant. Cannot scale data. in: .local(x, ...)
>
My data is a balanced set of 2500 examples, most of the 65 features are
b...
2009 Oct 06
0
Kernlab: multidimensional targets in rvm(), ksvm(), gausspr()
...gt; x <- sample(seq(-20,20,0.1), 100)
> y <- sin(x)/x + rnorm(100,sd=0.05)
> x <- matrix(x, nrow=25, ncol=4)
> y <- matrix(y, nrow=25, ncol=4)
# build the model: seems successful
> foo <- rvm(x, y) # same with ksvm(), gausspr(), ecc.
Using automatic sigma estimation (sigest) for RBF or laplace kernel
> foo
Relevance Vector Machine object of class "rvm"
Problem type: regression
Gaussian Radial Basis kernel function.
Hyperparameter : sigma = 0.00179432103430767
Number of Relevance Vectors : 7
Variance : 0.05937295
Training error : 0.049660537
# but pr...
2009 Jul 12
1
Splitting dataset for Tuning Parameter with Cross Validation
Hi,
My question might be a little general.
I have a number of values to select for the complexity parameters in some classifier, e.g. the C and gamma in SVM with RBF kernel. The selection is based on which values give the smallest cross validation error.
I wonder if the randomized splitting of the available dataset into folds is done only once for all those choices for the parameter values, or
2009 Oct 04
3
error installing/compiling kernlab
Hi everybody,
I''m using R on a 64-bit Ubuntu 9.04 (Jaunty). I prefer to install R
packages from source, even if they are available in Synaptic. The
problem is that I can''t install/compile kernlab. Everything works fine
until it gets to the lazy loading part:
** preparing package for lazy loading
Creating a new generic function for "terms" in "kernlab"
2010 Sep 24
0
kernlab:ksvm:eps-svr: bug?
...ar)&&(class(kernel)=="rbfkernel" || class(kernel) =="laplacedot" || kernel == "laplacedot"|| kernel=="rbfdot")){
154 kp <- match.arg(kpar,"automatic")
155 if(kp=="automatic")
156 kpar <- list(sigma=mean(sigest(x,scaled=FALSE)[c(1,3)]))
157 cat("Using automatic sigma estimation (sigest) for RBF or laplace kernel","\n")
158
159 }
160 if(!is(kernel,"kernel"))
161 {
162 if(is(kernel,"function")) kernel <- deparse(substitute(ker...