Displaying 3 results from an estimated 3 matches for "residi".
Did you mean:
reside
2003 Sep 30
1
can't get names from vector in nlm calls
...assign( names( theta )[i], val ) # gags here cause I can't
get the names...
}
## resids = eval( lhs ) - eval( rhs )
for( i in length( eqns ) )
{
lhs[[i]] <- eval( formula( eqns[[i]] )[2] )
rhs[[i]] <- eval( formula( eqns[[i]] )[3] )
residi[[i]] <- lhs[[i]] - rhs[[i]]
r <- rbind( r, as.matrix( residi[[i]] ) )
}
## blah, blah, blah....
knls <- obj
}
print( "calling nlstest" )
demand2 <- q ~ d0 + d1 * p + d2 * d
supply2 <- q ~ s0 + s1 * p + s2 * f + s3 * a
system2 <- list( demand2, s...
2003 Oct 06
1
getting names of p vector in nlm function...
...assign( names( theta )[i], val ) # gags here cause I can't
get the names...
}
## resids = eval( lhs ) - eval( rhs )
for( i in length( eqns ) )
{
lhs[[i]] <- eval( formula( eqns[[i]] )[2] )
rhs[[i]] <- eval( formula( eqns[[i]] )[3] )
residi[[i]] <- lhs[[i]] - rhs[[i]]
r <- rbind( r, as.matrix( residi[[i]] ) )
}
## blah, blah, blah....
knls <- obj
}
print( "calling nlstest" )
demand2 <- q ~ d0 + d1 * p + d2 * d
supply2 <- q ~ s0 + s1 * p + s2 * f + s3 * a
system2 <- list( demand2, s...
2006 Nov 30
0
Standardized deviance residuals in plot.lm
...x with plot(x) are calculated as
r <- residuals(x)
s <- sqrt(deviance(x)/df.residual(x))
w <- weights(x)
hii <- lm.influence(x)$hat
r.w <- if (is.null(w)) r else (sqrt(w) * r)
rs <- r.w/(s * sqrt(1 - hii))
This implies that, for example, for binomial B(ni,pi) data the devaince
residials (which are just r) are weighted not only with sqrt(1-hii), but
also with 1/sqrt(ni) and s, leading to absurd values. As a result all
leverage/outlier diagnostics is absolutly wrong.
Am I right and this should be reported as a bug?
Many thanks,
Tatyana
--
Tatyana Krivobokova
Bielefeld Unive...