Displaying 20 results from an estimated 41 matches for "remldev".
Did you mean:
remade
2009 Nov 01
1
package lme4
...Block=rep(1:3,each=9))
Rice.lmer<-lmer(Yield ~ (1|Variety) + (1|Stand) + (1|Block) +
(1|Variety:Stand), data = Rice)
Result:
Linear mixed model fit by REML
Formula: Yield ~ (1 | Variety) + (1 | Stand) + (1 | Block) + (1 |
Variety:Stand)
Data: Rice
AIC BIC logLik deviance REMLdev
96.25 104.0 -42.12 85.33 84.25
Random effects:
Groups Name Variance Std.Dev.
Variety:Stand (Intercept) 1.345679 1.16003
Block (Intercept) 0.000000 0.00000
Stand (Intercept) 0.888889 0.94281
Variety (Intercept) 0.024691 0.15714
Residual...
2009 Apr 15
2
AICs from lmer different with summary and anova
...hich are the real AIC and logLik
values for the different models?
Thanks for your help,
Jonathan Williams
Output:-
> fit0=lmer(y~x1+x2+(1|id), data=datx); print(summary(fit0),corr=F)
Linear mixed model fit by REML
Formula: y ~ x1 + x2 + (1 | id)
Data: datx
AIC BIC logLik deviance REMLdev
87.34 104.7 -38.67 63.96 77.34
Random effects:
Groups Name Variance Std.Dev.
id (Intercept) 0.016314 0.12773
Residual 0.062786 0.25057
Number of obs: 240, groups: id, 120
Fixed effects:
Estimate Std. Error t value
(Intercept) 0.50376 0.05219...
2010 May 18
1
BIC() in "stats" {was [R-sig-ME] how to extract the BIC value}
...gt;
>>>>> (fm1 ? ?<- lmer(Reaction ~ Days + (Days|Subject), sleepstudy))
>>>> Linear mixed model fit by REML
>>>> Formula: Reaction ~ Days + (Days | Subject)
>>>> ? Data: sleepstudy
>>>> ?AIC ?BIC logLik deviance REMLdev
>>>> ?1756 1775 -871.8 ? ? 1752 ? ?1744
>>>> Random effects:
>>>> ?Groups ? Name ? ? ? ?Variance Std.Dev. Corr
>>>> ?Subject ?(Intercept) 612.092 ?24.7405
>>>> ? ? ? ? ?Days ? ? ? ? 35.072 ? 5.9221 ?0.066
>>&g...
2009 Sep 18
3
Error: length(f1) == length(f2) is not TRUE
Dear R users,
I am trying to fit an lmer model with only random effects which is giving
me the following error:
Error : length(f1) == length(f2) is not TRUE
In addition: Warning messages:
1: In P1L55:family :
numerical expression has 390 elements: only the first used
2: In P1L55:family :
numerical expression has 390 elements: only the first used
I am trying to extract variance components
2013 Apr 23
1
lmer with only random effect
...o I take out the intercept term? Or
if this is not possible for the lmer function, is it possible using lme
function in the "nlme" package?
Thank you very much in advance.
Hanna
Linear mixed model fit by REML
Formula: values ~ (1 | lot)
Data: resamp
AIC BIC logLik deviance REMLdev
-14.21 -9.459 10.1 -23.88 -20.21
Random effects:
Groups Name Variance Std.Dev.
lot (Intercept) 0.036077 0.18994
Residual 0.017278 0.13144
Number of obs: 36, groups: lot, 10
Fixed effects:
Estimate Std. Error t value
(Intercept) 99.78693 0.06421 1...
2012 May 03
2
Very small random effect estimation in lmer but not in stata xtmixed
...ry small (3.5803e-05)compared to stata's (see below 1.002). Any ideas why this should be happening please....?
LMER MODEL
summary(lmer(AnxietyScore ~ cc + (1|SetID), data=mydf))
Linear mixed model fit by REML
Formula: AnxietyScore ~ cc + (1 | SetID)
Data: mydf
AIC BIC logLik deviance REMLdev
493.4 503.4 -242.7 486.6 485.4
Random effects:
Groups Name Variance Std.Dev.
SetID (Intercept) 1.2819e-09 3.5803e-05
Residual 1.3352e+01 3.6540e+00
Number of obs: 90, groups: SetID, 33
Fixed effects:
Estimate Std. Error t value
(Intercept) 3.1064 0...
2009 Jul 23
1
setting up LMER for repeated measures and how do I get a p value for my fixed effect, group?
...he variable SS, Value is the outcome measure, each subject has Value measured three times.
I have used the following code:
fit1<-lmer(Value~Group+(1|SS),data=smallDS)
print(fit1)
Linear mixed model fit by REML
Formula: Value ~ Group + (1 | SS)
Data: Dataset
AIC BIC logLik deviance REMLdev
284.8 290.4 -138.4 291.4 276.8
Random effects:
Groups Name Variance Std.Dev.
SS (Intercept) 1038.0 32.218
Residual 552.7 23.510
Number of obs: 30, groups: SS, 10
Fixed effects:
Estimate Std. Error t value
(Intercept)...
2011 Aug 18
1
Using mixed models to analyze Longitudinal intervention
...e t-value on group.minus.1 is 0.63 and so the intervention
did not have a significant effect. Is that the correct way of interpreting
this?
Troy
Linear mixed model fit by REML
Formula: TC ~ group.minus.1 + Visit + (Visit | Study.Number) + (1 |
Study.Number)
Data: rawdf
AIC BIC logLik deviance REMLdev
4676 4710 -2330 4670 4660
Random effects:
Groups Name Variance Std.Dev. Corr
Study.Number (Intercept) 857.440 29.2821
Visit 21.471 4.6337 -0.755
Study.Number (Intercept) 508.757 22.5556
Residual 333.710 18.2677
Number of obs: 494, groups: Study.Number, 140
Fixed effects:
Estimate Std. Err...
2009 Nov 24
2
random effects correlation in lmer
...fects model to a set of longitudinal data
over a set of individual subjects:
(fm1 <- lmer(x ~ time + (time|ID),aa))
I quite often find that the correlation between the random effects is 1.0:
Linear mixed model fit by REML
Formula: x ~ time + (time | ID)
Data: aa
AIC BIC logLik deviance REMLdev
28574 28611 -14281 28561 28562
Random effects:
Groups Name Variance Std.Dev. Corr
ID (Intercept) 77.035 8.7770
time 10.817 3.2889 1.000
Residual 112.151 10.5901
Number of obs: 3539, groups: ID, 1000
Fixed effects:
Estimate St...
2011 Jun 01
1
different results from lme() and lmer()
...? ? ?Med ? ? ? ? Q3 ? ? ? ?Max?-1.9928118 -0.6586834 -0.1004301 ?0.6949714 ?2.0225381?
Number of Observations: 60Number of Groups: 12?
> lmer(root~fertilizer+(week|plant),data=dat)Linear mixed model fit by REML?Formula: root ~ fertilizer + (week | plant)?? ?Data: dat?? ?AIC BIC logLik deviance REMLdev?174.4 187 -81.21 ? ?159.7 ? 162.4Random effects:?Groups ? Name ? ? ? ?Variance ? Std.Dev. ? Corr ??plant ? ?(Intercept) 4.1416e-18 2.0351e-09 ? ? ??? ? ? ? ? week ? ? ? ?8.7452e-01 9.3516e-01 0.000??Residual ? ? ? ? ? ? 2.2457e-01 4.7389e-01 ? ? ??Number of obs: 60, groups: plant, 12
Fixed effects:...
2012 Jun 30
2
Significance of interaction depends on factor reference level - lmer/AIC model averaging
...-
And the full model summary looks like this..
Linear mixed model fit by maximum likelihood
Formula: d15N ~ (AGECAT2 + Sex + Location1 + AGECAT2:Location1 +
Sex:Location1 + AGECAT2:Sex + (1 | Year) + (1 |
Location1/Socialgroup/Tattoo))
Data: nocubs
AIC BIC logLik deviance REMLdev
1568 1670 -761.1 1522 1534
Random effects:
Groups Name Variance Std.Dev.
Tattoo:(Socialgroup:Location1) (Intercept) 0.35500 0.59582
Socialgroup:Location1 (Intercept) 0.35620 0.59682
Location1 (Intercept) 0.00000 0.0000...
2010 Oct 13
2
LME with 2 factors with 3 levels each
...my model to hopefully illustrate my question. I'm happy to provide additional information/output if someone is interested in helping me with this problem.
Thank you,
Laura
Linear mixed model fit by REML
Formula: PTR ~ Test * Group + (1 | student)
Data: ptr
AIC BIC logLik deviance REMLdev
-625.7 -559.8 323.9 -706.5 -647.7
Random effects:
Groups Name Variance Std.Dev.
student (Intercept) 0.0010119 0.03181
Residual 0.0457782 0.21396
Number of obs: 2952, groups: studentID, 20
Fixed effects:
Estimate Std. Error t value
(Intercept) 0.547...
2010 Sep 17
1
lmer() vs. lme() gave different variance component estimates
...,"C","Control",..: 1 1 1 1 1 1 1 1 1 1 ...
I fit a mixed model using both lmer() from lme4 package and lme() from nlme
package:
> lmer(score~trt+(1|id/eye),dat)
Linear mixed model fit by REML
Formula: score ~ trt + (1 | id/eye)
Data: dat
AIC BIC logLik deviance REMLdev
446.7 495.8 -212.4 430.9 424.7
Random effects:
Groups Name Variance Std.Dev.
eye:id (Intercept) 6.9208e+00 2.630742315798
id (Intercept) 1.4471e-16 0.000000012030
Residual 1.8750e-02 0.136930641909
Number of obs: 640, groups: eye:id, 160; id, 80
> summa...
2010 Oct 25
3
question in using nlme and lme4 for unbalanced data
...t won't tell me the p value.
library(lme4)
m<-lmer(enfa_mortality ~ guild_removal*enfa_removal +(1|block), data=com_summer)
here is the result
Linear mixed model fit by REML
Formula: enfa_mortality ~ guild_removal * enfa_removal + (1 | block)
Data: com_summer
AIC BIC logLik deviance REMLdev
8.552 15.87 1.724 -16.95 -3.448
Random effects:
Groups Name Variance Std.Dev.
block (Intercept) 0.000000 0.00000
Residual 0.035380 0.18809
Number of obs: 25, groups: block, 5
Fixed effects:
Estimate Std. Error t value
(Intercept)...
2010 Sep 09
5
Highlighting a few bars in a barplot
Hello,
I have a bar plot where I am already using colour to distinguish one set
of samples from another. I would also like to highlight a few of these
bars as ones that should be looked at in detail. I was thinking of
using hatching, but I can't work out how or if you can have a background
colour and hatching which is different between bars. Any suggestions on
how I should do this?
Thanks
2012 Oct 03
1
Difficulties in trying to do a mixed effects model using the lmer function
...eme 2 13.161 6.5803 1.3255
The problems I have are:
(1) How can I get the P-values?
(2) How can I get the overall model statistic?
Than I do:
> summary(fm1)
and get:
Linear mixed model fit by maximum likelihood
Formula: dbh ~ spec + scheme + (1 | Plot)
Data: d
AIC BIC logLik deviance REMLdev
147.2 157 -66.6 133.2 125.8
Random effects:
Groups Name Variance Std.Dev.
Plot (Intercept) 0.0000 0.0000
Residual 4.9644 2.2281
Number of obs: 30, groups: Plot, 2
Fixed effects:
Estimate Std. Error t value
(Intercept) 6.9074 0.9424 7.329
s...
2013 Oct 18
3
pamer.fnc y la nueva versión de R
...t; dat$Condicion2 <-
+ factor(rep(x= c("X","Y")))
> mod <- lmer( RT ~ Condicion1 * Condicion2 + (1|Subject), data=dat)
> summary(mod)
Linear mixed model fit by REML
Formula: RT ~ Condicion1 * Condicion2 + (1 | Subject)
Data: dat
AIC BIC logLik deviance REMLdev
162.3 168.3 -75.15 175.7 150.3
Random effects:
Groups Name Variance Std.Dev.
Subject (Intercept) 101.59 10.079
Residual 405.85 20.146
Number of obs: 20, groups: Subject, 4
Fixed effects:
Estimate Std. Error t value
(Intercept)...
2012 Jun 26
1
How to estimate variance components with lmer for models with random effects and compare them with lme results
...ource) 1 426 3.754112 0.0533
summary(lmer(HD~1+(as.factor(Treatment)*as.factor(Source)|Family),data=regrexpdat))
Linear mixed model fit by REML
Formula: HD ~ 1 + (as.factor(Treatment) * as.factor(Source) | Family)
Data: regrexpdat
AIC BIC logLik deviance REMLdev
-103.5 -54.43 63.75 -132.5 -127.5
Random effects:
Groups Name Variance Std.Dev.
Corr
Family (Intercept) 0.0113276 0.106431
as.factor(Treatment)...
2013 Oct 18
0
pamer.fnc y la nueva versión de R
...factor(rep(x= c("X","Y")))
> > mod <- lmer( RT ~ Condicion1 * Condicion2 + (1|Subject), data=dat)
> > summary(mod)
> Linear mixed model fit by REML
> Formula: RT ~ Condicion1 * Condicion2 + (1 | Subject)
> Data: dat
> AIC BIC logLik deviance REMLdev
> 162.3 168.3 -75.15 175.7 150.3
> Random effects:
> Groups Name Variance Std.Dev.
> Subject (Intercept) 101.59 10.079
> Residual 405.85 20.146
> Number of obs: 20, groups: Subject, 4
>
> Fixed effects:
> Estimate...
2008 Aug 25
3
lmer4 and variable selection
...> summary(temp.lme1)
Linear mixed model fit by REML
Formula: T.B ~ tarsus + wing + weight + factor(age) + factor(sex) + fat +
minsunset + day1oct + day1oct.2 + minnight + ave.day + minnight.1 + T.A
+ ave.night.1 + (1 | ID) + (1 | sign)
Data: bodytemp.df
AIC BIC logLik deviance REMLdev
557.8 614 -260.9 441 521.8
Random effects:
Groups Name Variance Std.Dev.
ID (Intercept) 1.0399e-01 0.32247096
sign (Intercept) 6.2663e-08 0.00025033
Residual 8.0162e-01 0.89533134
Number of obs: 167, groups: ID, 124; sign, 2
Fixed effects:...