Displaying 12 results from an estimated 12 matches for "pred3".
Did you mean:
preds
2013 Jan 22
1
Erro message in glmmADMB
Hello everybody,
I am using glmmADMB and when I run some models, I recieve the following
message:
Erro em glmmadmb(eumencells ~ 1 + (1 | owners), data = pred3, family =
"nbinom", :
The function maximizer failed (couldn't find STD file)
Furthermore: Lost warning messages:
Command execution 'C:\Windows\system32\cmd.exe /c
"C:/Users/helenametal/Documents/R/win-library/2.15/glmmADMB/bin/windows32/glmmadmb.exe"
-maxfn 500 -maxph 5...
2005 Mar 03
3
creating a formula on-the-fly inside a function
...ns a linear model and
returns r2. But, the number of predictor variables passed to the
function changes from 1 to 3. How can I change the formula inside the
function depending on the number of variables passed in?
An example:
get.model.fit <- function(response.dat, pred1.dat, pred2.dat = NULL,
pred3.dat = NULL)
{
res <- lm(response.dat ~ pred1.dat + pred2.dat + pred3.dat)
summary(res)$r.squared
# other stuff happens here...
}
y <- rnorm(10)
x1 <- y + runif(10)
x2 <- y + runif(10)
x3 <- y + runif(10)
get.model.fit(y, x1, x2, x3)
get.model.fit(y, x1, x2)
get.model.fit...
2010 May 28
1
Comparing and Interpreting GAMMs
...t) 0.12965 0.36007
Xr.1 s(hours24) 1291.42444 35.93639
Number of obs: 97920, groups: vpnr, 114; Xr.1, 8
Fixed effects:
Estimate Std. Error z value Pr(>|z|)
X(Intercept) 0.3713345 0.0644469 5.762 8.32e-09 ***
Xpred2 -0.0575848 0.0865231 -0.666 0.506
Xpred3 0.0003748 0.0869543 0.004 0.997
…
Parametric coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.3713345 0.0149858 24.779 < 2e-16 ***
pred2 -0.0575848 0.0197488 -2.916 0.00355 **
pred3 0.0003748 0.0198803 0.019 0.98496...
2006 May 27
1
Recommended package nlme: bug in predict.lme when an independent variable is a polynomial (PR#8905)
..." model matrix for predictions
> p <- poly(Orthodont$age, 3)
> mm2 <- model.matrix(~ poly(age, 3, coefs = attr(p, "coefs")) + Sex, data =
Newdata)
>
> data.frame(pred1 = predict(fm, level = 0, newdata = Newdata),
+ pred2 = mm1 %*% fixef(fm),
+ pred3 = head(predict(fm, level = 0)),
+ pred4 = mm2 %*% fixef(fm))
pred1 pred2 pred3 pred4
1 18.61469 18.61469 23.13079 23.13079
2 23.23968 23.23968 24.11227 24.11227
3 29.90620 29.90620 25.59375 25.59375
4 36.19756 36.19756 27.03819 27.03819
5 18.61469 18.61469 23.13079 23.13079...
2009 Apr 01
3
How to prevent inclusion of intercept in lme with interaction
...l=0)
summary(grd.lme0)
# Gives true,
all.equal(grd$pred1,grd$pred0)
# Everything as expected without treat
grd.lme2 = lme(newbone~t,data=grd,random=~1|subject)
grd$pred2 = predict(grd.lme2,level=0)
summary(grd.lme2)
# Forced intercept = 0
grd.lme3 = lme(newbone~t-1,data=grd,random=~1|subject)
grd$pred3 = predict(grd.lme3,level=0)
summary(grd.lme3)
# As expected: not equal
all.equal(grd$pred2,grd$pred3)
#-------------------------------------------------------------------
R version 2.9.0 Under development (unstable) (2009-03-13 r48127)
i386-pc-mingw32
locale:
LC_COLLATE=German_Germany.1252;LC_C...
2008 May 09
2
how to check linearity in Cox regression
Hi, I am just wondering if there is a test available for testing if a linear fit of an independent variable in a Cox regression is enough? Thanks for any suggestions.
John Zhang
____________________________________________________________________________________
[[elided Yahoo spam]]
2003 Apr 25
1
validate function in Design library does not work with small samples
...When
my sample size is reduced from 300 to 150, the
function complains (length of dimnames[1] not equal to
array) and does not produce any results. There are no
missing values in the data. Any suggestions for a
work-around?
Thank you in Advance.
>
f.total=cph(Surv(fu,censor)~predictor+pred2+pred3,data=data,x=T,y=T,surv=T)
> set.seed(6)
> val.step=validate(f.total,B=155,bw=T)
Backwards Step-down - Original Model
No Factors Deleted
Factors in Final Model
[1] pred2
.Random.seed: 1 -1021164091 1170333634 in .GlobalEnv
Iteration:
1 2 3 4 5 6 7 Error in fit(NULL, y[trai...
2011 Apr 15
1
GLM and normality of predictors
...ut that. As it is easy to understand I'm not a statistician so be patient please.
I want to estimate the possible effects of some predictors on my response variable that is nº of males and nº of females (cbind(males,females)), so, it would be:
fullmodel<-glm(cbind(males,females)~pred1+pred2+pred3, binomial)
I have n= 11 (ecological data, small sample size is a a frequent problem!).
Someone told me that I have to check for normality of the predictors (and in case transform to reach normality) but I am in doubt about the fact that a normality test can be very informative with such a small s...
2006 May 30
0
(PR#8905) Recommended package nlme: bug in predict.lme when an independent variable is a polynomial
...<- model.matrix(~ poly(age, 3, coefs =3D attr(p, "coefs")) + Sex,=
data =3D
> >> Newdata)
> >>>
> >>> data.frame(pred1 =3D predict(fm, level =3D 0, newdata =3D Newdata),
> >> + pred2 =3D mm1 %*% fixef(fm),
> >> + pred3 =3D head(predict(fm, level =3D 0)),
> >> + pred4 =3D mm2 %*% fixef(fm))
> >> pred1 pred2 pred3 pred4
> >> 1 18.61469 18.61469 23.13079 23.13079
> >> 2 23.23968 23.23968 24.11227 24.11227
> >> 3 29.90620 29.90620 25.59375 25.59375...
2011 Oct 21
4
plotting average effects.
...x(dat$popc100))] <- max(dat$popc100)
> dat3$popc100 <- dat$popc100 - 1000
> dat3$popc100[which(dat3$popc100 < min(dat$popc100))] <- min(dat$popc100)
> pred1 <- predict(mod, type="response")
> pred2 <- predict(mod, newdata=dat2, type="response")
> pred3 <- predict(mod, newdata=dat3, type="response")
> pop.group <- cut(dat$popc100kpc, breaks=quantile(dat$popc100kpc,
> seq(0,1,by=.3)), include.lowest=T)
> means <- by(cbind(pred1, pred2, pred3), list(pop.group), apply, 2, mean)
> means <- do.call(rbind, means)
>...
2005 Dec 14
3
glmmADMB: Generalized Linear Mixed Models using AD Model Builder
Dear R-users,
Half a year ago we put out the R package "glmmADMB" for fitting
overdispersed count data.
http://otter-rsch.com/admbre/examples/glmmadmb/glmmADMB.html
Several people who used this package have requested
additional features. We now have a new version ready.
The major new feature is that glmmADMB allows Bernoulli responses
with logistic and probit links. In addition there
2012 Jun 12
0
How to create lift chart and ROC curve in R
....AIA)
,family=binomial(link="logit"),data=Attrition_data_2)
summary(newlogit3)
to predict I have a have used the code
Test_data_1011 <- read.csv(file="TEST DATA_10_11.csv", header = TRUE, sep = ",", row.names = "employee_id", stringsAsFactors = TRUE)
pred3 = predict(newlogit3,Test_data_1011 ,type = "response")
Warm regards,
Dwaipayan
American Express made the following annotations on Tue Jun 12 2012 05:44:05
******************************************************************************
"This message and any attachments are sol...