Displaying 20 results from an estimated 54 matches for "ovarian".
2009 Feb 06
1
Using subset in validate() in Design, what is the correct syntax?
Hi
I am trying to understand how to get the validate() function in Design
to work with the subset option. I tried this:
ovarian.cph=cph(Surv(futime, fustat) ~ age+factor(ecog.ps)+strat(rx),
time.inc=1000, x=T, y=T, data=ovarian)
validate(ovarian.cph)
#fine when no subset is used, but the following two don't work:
> validate(ovarian.cph, subset=ovarian$ecog.ps==2)
Error in order(c(1L, 1L, 1L, 2L, 1L, 1L, 2L, 2L,...
2010 May 23
3
"order" issue
...a
26 LC:A549 -2.66221 0.71215 Lung
61 RE:A498 -2.89402 0.93287 Renal
9 BR:HS578T -2.94118 1.1217 Breast
34 LC:NCI_H522 -2.94381 0.3859 Lung
66 RE:TK_10 -2.95281 1.26245 Renal
52 OV:NCI_ADR_RES -3.04456 0.17046 Ovarian
57 OV:SK_OV_3 -3.04477 2.15405 Ovarian
53 OV:OVCAR_3 -3.0705 -0.31743 Ovarian
14 CNS:SF_295 -3.09348 -1.00095 CNS
54 OV:OVCAR_4 -3.13137 -0.47497 Ovarian
36 LE:HL_60 -3.16745 -3.16745 Leukemia
38 LE:MOLT_4 -3.20055 -1.72841 Le...
2009 Apr 14
1
Function call error in cph/survest (package Design)
...below works with a standard data set, but not with my
data, but I cannot locate the problem.
Note that I am using an older package of survival to avoid a problem with
the newly renamed function in survival meeting Design.
Dieter
# First, check standard example to make sure
library(Design)
data(ovarian)
dd = datadist(ovarian)
options(datadist="dd")
ovarian$rx = as.factor(ovarian$rx)
cp = cph(Surv(futime,fustat)~rx,data=ovarian,surv=TRUE,x=TRUE,y=TRUE)
summary(cp)
# works ok
survest(cp,levels(ovarian$rx),times=500)
# Small data set, 223 rows, 3650 bytes
cc = read.table("http://www....
2010 Jan 29
1
help on drawing right colors within a grouped xyplot (Lattice)
...3 4.073 11.569
30 Melanoma 1 5.829 11.183
31 Melanoma 1 2.533 10.812
32 Melanoma 1 3.253 11.278
33 Melanoma 1 2.427 10.954
34 Melanoma 1 2.522 10.585
35 Melanoma 1 6.019 9.384
36 Melanoma 1 2.711 9.801
37 Melanoma 1 6.570 10.049
38 Melanoma 3 7.838 11.364
39 Ovarian 1 9.067 11.060
40 Ovarian 1 8.645 11.849
41 Ovarian 3 7.079 10.937
42 Ovarian 3 9.626 11.911
43 Ovarian 3 8.478 10.954
44 Ovarian 3 8.890 12.076
45 Prostate 3 8.356 12.486
46 Prostate 3 9.074 11.841
47 Renal 3 9.117 12.324
48 Renal 3 9.522 12.362
4...
2011 Jul 10
1
Package "survival" --- Difference of coxph strata with subset?
[code]>require("survival")
> coxph(Surv(futime,fustat)~age + strata(rx),ovarian)
Call:
coxph(formula = Surv(futime, fustat) ~ age + strata(rx), data = ovarian)
coef exp(coef) se(coef) z p
age 0.137 1.15 0.0474 2.9 0.0038
Likelihood ratio test=12.7 on 1 df, p=0.000368 n= 26, number of events= 12
> coxph(Surv(futime,fustat)~age, ovarian, subset=rx==1)...
2018 May 24
1
Predictions from a Cox model - understanding centering of binary/categorical variables
Dear all,
I am using R 3.4.3 on Windows 10. I am preparing some teaching materials and I'm having trouble matching the by-hand version with the R code.
I have fitted a Cox model - let's use the ovarian data as an example:
library(survival)
data(ovarian)
ova_mod <- coxph(Surv(futime,fustat)~age+rx,data=ovarian)
If I want to make predict survival for a new set of individuals at 100 days then that is trivial using predict.coxph e.g.:
newdata <- data.frame(futime=rep(100,5),fustat=rep(1,5),age...
2009 Mar 30
1
Possible bug in summary.survfit - 'scale' argument ignored?
Hi all,
Using:
R version 2.8.1 Patched (2009-03-07 r48068)
on OSX (10.5.6) with survival version:
Version: 2.35-3
Date: 2009-02-10
I get the following using the first example in ?summary.survfit:
> summary( survfit( Surv(futime, fustat)~1, data=ovarian))
Call: survfit(formula = Surv(futime, fustat) ~ 1, data = ovarian)
time n.risk n.event survival std.err lower 95% CI upper 95% CI
59 26 1 0.962 0.0377 0.890 1.000
115 25 1 0.923 0.0523 0.826 1.000
156 24 1 0.885 0.0...
2020 Sep 30
0
2 KM curves on the same plot
...rayprofile at yahoo.com> wrote:
> >
> > Jim,
> >
> > I tried a few things, I found that clip() works if I just do some regular graphing tasks. But as long as I run lines(fit) with "fit" object is a survfit object, this would reset to default plot region. See the ovarian example below:
> >
> > library(survival)
> > ovarian1<-ovarian
> > ovarian1$fustat[ovarian$futime>450]<-0
> > ovarian1$futime[ovarian$futime>450]<-450
> > ovarian2<-subset(ovarian,futime>450)
> >
> > fit1 <- survfit(Surv(futime...
2007 Jan 23
1
Estimate and plot hazard function using "muhaz" package
...ions in "muhaz" package to
estimate and plot hazard funciton. However function "muhaz" always gives
error message "Error in Surv(times, delta) : object "times" not found". I
could not even run their sample codes in the user's manual as follows:
data(ovarian)
attach(ovarian)
fit1 <- muhaz(futime, fustat)
it gave the same error message. By the way, the "survival" package is
installed and functions well on my computer.
Does anyone have the same problem? Thanks!
Deming
2009 Nov 13
2
survreg function in survival package
...e output of survreg function with standard error, z, p.value etc? Does it mean that intercept was fitted with the covariates? Does Value column represent coefficients or some thing else?
Regards,
-------------------------------------------------
tmp = survreg(Surv(futime, fustat) ~ ecog.ps + rx, ovarian, dist='weibull',scale=1)
> summary(tmp)
Call:
survreg(formula = Surv(futime, fustat) ~ ecog.ps + rx, data = ovarian,
dist = "weibull", scale = 1)
Value Std. Error z p
(Intercept) 6.962 1.322 5.267 1.39e-07
ecog.ps -0.433 0.587 -0.7...
2009 Apr 03
2
Schoenfeld Residuals
Dear All,
Sorry to bother you again.
I have a model:
coxfita=coxph(Surv(rem.Remtime/365,rem.Rcens)~all.sex,data=nearma)
and I'm trying to do a plot of Schoenfeld residuals using the code:
plot(cox.zph(coxfita))
abline(h=0,lty=3)
The error message I get is:
Error in plot.window(...) : need finite 'ylim' values
In addition: Warning messages:
1: In sqrt(x$var[i, i] * seval) : NaNs
2012 Jun 28
3
Sobre survival analysis
Hola
Estoy tratando de correr un survival analysis usando un Cox regression model.
Tengo una duda respecto a la organizacion del script. Tengo una variable que es -tamano del individuo- y quiero ver si hay diferencia en sobrevivencia respecto a tamano. Como diseno de campo los tamanos fueron ubicados de forma aleatoria en bloques al azar.
Cuado planteo el script tengo algo como:
2010 Oct 30
1
two group cox model
Dear all,
I am doing
library(survival)
fit <- coxph(Surv(futime,fustat) ~ rx, ovarian)
plot(survfit(fit,newdata=ovarian),col=c(1,2))
legend("bottomleft", legend=c("rx = 0", "rx = 1"),
lty=c(1,2),col=c(1,2))
Is this correct to compare these two groups? Is the 0.31 the p-value that
the median f two groups are equal
Why lty does not work here?
Man...
2005 Nov 27
1
the output of coxph
Dear All:
I have some questions about the output of coxph.
Below is the input and output:
----------------------------------------
> coxph(formula = Surv(futime, fustat) ~ age + rx + ecog.ps, data =
+ ovarian, x = TRUE)
Call:
coxph(formula = Surv(futime, fustat) ~ age + rx + ecog.ps, data =
ovarian, x = TRUE)
coef exp(coef) se(coef) z p
age 0.147 1.158 0.0463 3.17 0.0015
rx -0.815 0.443 0.6342 -1.28 0.2000
ecog.ps 0.103 1.109 0.6064 0.17 0.8600...
2003 Feb 27
2
interval-censored data in survreg()
...h lower
bounds of zero, despite the fact that plnorm(0)==0 and
pnorm(-Inf)==0 are well defined. Below is a short example to
reproduce the problem.
Does anyone know why survreg() must behave that way?
Is there an alternate solution to this problem?
Sincerely,
Jerome Asselin
library(survival)
data(ovarian)
newovarian <- ovarian
newovarian$lower59 <- newovarian$futime-59
newovarian$time59 <- Surv(newovarian$lower59,newovarian$futime,
event=rep(3,nrow(newovarian)),type="interval")
survreg(time59~ecog.ps+rx,data=newovarian,dist="lognormal")
#THIS DOES NOT WORK BECAUSE...
2011 Jun 24
1
UnoC function in survAUC for censoring-adjusted C-index
...in the package survAUC. The relevant function is UnoC.
The question has to do with what happens when I specify a time point t for the upper limit of the time range under consideration (we want to avoid using the right-end tail of the KM curve).
Copying from the example in the help file:
TR <- ovarian[1:16,]
TE <- ovarian[17:26,]
train.fit <- coxph(Surv(futime, fustat) ~ age,x=TRUE, y=TRUE, method="breslow", data=TR)
lpnew <- predict(train.fit, newdata=TE)
Surv.rsp <- Surv(TR$futime, TR$fustat)
Surv.rsp.new <- Surv(TE$futime, TE$fustat)
If time is left NU...
2007 Dec 07
1
Make natural splines constant outside boundary
Hi,
I'm using natural cubic splines from splines::ns() in survival
regression (regressing inter-arrival times of patients to a queue on
queue size). The queue size fluctuates between 3600 and 3900.
I would like to be able to run predict.survreg() for sizes <3600 and
>3900 by assuming that the rate for <3600 is the same as for 3600 and
that for >4000 it's the same as for
2004 Nov 10
0
RE: [S] worked in R, but not in S-Plus
...iables as additional arguments is a matter of
personal preference.
f.coxph.zph<-function(x, timeVar, statusVar)
{
cox.fit <- coxph(Surv(timeVar, statusVar) ~ x, na.action =
na.exclude, method = "breslow", x=TRUE)
fit.zph<-cox.zph(cox.fit)
fit.zph$table[,3]
}
time.cox <- ovarian$futime
status.cox <- ovarian$fustat
apply(ovarian[,-(1:2)],2, f.coxph.zph, timeVar = time.cox, statusVar =
status.cox)
--Matt
-----Original Message-----
From: s-news-owner at lists.biostat.wustl.edu
[mailto:s-news-owner at lists.biostat.wustl.edu]On Behalf Of array chip
Sent: Tuesday, Novem...
2006 Dec 21
1
: newbie estimating survival curve w/ survfit for coxph
I am wondering how to estimate the survival curve for a particular case(s)
given a coxph model
using this example code:
#fit a cox proportional hazards model and plot the
#predicted survival curve
fit <- coxph(
Surv(futime,fustat)~resid.ds+strata(rx)+ecog.ps+age,data=ovarian[1:23,])
z <- survfit(fit,newdata=ovarian[24:26,],individual=F)
zs <- z$surv
zt <- z$time
I get the following output:
24 25 26
[1,] 0.9740399 0.91737529 0.9873785
[2,] 0.9431988 0.82552974 0.9721557
[3,] 0.9023088 0.71387936 0.9515702...
2007 May 16
2
log rank test p value
How can I get the Log - Rank p value to be output?
The chi square value can be output, so I was thinking if I can also have the
degrees of freedom output I could generate the p value, but can't see how to
find df either.
> (survtest <- survdiff(Surv(time, cens) ~ group, data = surv,rho=0))
Call:
survdiff(formula = Surv(time, cens) ~ group, data = surv, rho = 0)
N Observed