search for: op1l

Displaying 2 results from an estimated 2 matches for "op1l".

Did you mean: op1
2018 Feb 09
1
Optim function returning always initial value for parameter to be optimized
...nput= data.frame(state1 = (1:500), state2 = (201:700) ) with data that partially overlap in terms of values. I want to minimize the assessment error of each state by using this function: err.th.scalar <- function(threshold, data){ state1 <- data$state1 state2 <- data$state2 op1l <- length(state1) op2l <- length(state2) op1.err <- sum(state1 <= threshold)/op1l op2.err <- sum(state2 >= threshold)/op2l total.err <- (op1.err + op2.err) return(total.err) } SO I'm trying to minimize the total error. This Total Error should be a U shape...
2018 Feb 10
0
Optim function returning always initial value for parameter to be optimized
...nk so. It's zero, so of course > you end up where you start. > > Try > > data.input= data.frame(state1 = (1:500), state2 = (201:700) ) > err.th.scalar <- function(threshold, data){ > > state1 <- data$state1 > state2 <- data$state2 > > op1l <- length(state1) > op2l <- length(state2) > > op1.err <- sum(state1 <= threshold)/op1l > op2.err <- sum(state2 >= threshold)/op2l I think this function is not smooth, and not even continuous. Gradient methods require differentiable (smooth) functions...