search for: mod5

Displaying 6 results from an estimated 6 matches for "mod5".

Did you mean: md5
2012 Oct 23
1
factor or character
...'rs8094221_T', 'rs7227515_A', 'rs537202_C')) Selec = todos[ , colnames(todos) %in% snps] head(Selec) But, I have a data set with 1.000 columns and I need extract 70 to use (like snps in command above). This 70 snps are in a file. So I create a file to extract them with (mod5.sig = with(mod5, data.frame(snps = SNP[pvalor < 5e-8]))) str(mod5.sig) (snps = (mod5.sig)) The structure is: 'data.frame': 76 obs. of 1 variable: $ snps: Factor w/ 220 levels "rs10058955_A",..: 89 59 88 73 40 35 97 55 87 204 ... But it doesn't work. The output is: >...
2012 Jul 30
1
te( ) interactions and AIC model selection with GAM
...sion of the basis (k)? Example: Option 1: a) mod1 <- gam (bm ~ t, data = data) b) mod2 <- gam (bm ~ te (t, k = 5, bs = ?cr?), data = data) c) mod3 <- gam (bm ~ te (t_year, k = 5, bs = ?cc?), data = data) d) mod4 <- gam (bm ~ te (t_year, temp_W, k = 5, bs = c(?cc?,?cr?)), data = data) e) mod5 <- gam (bm ~ te (t_year, temp_W, temp_sept, k = 5, bs = c(?cc?,?cr?,?cr?)), data = data). Here the limitation for k = 5, is due to mod5, I don?t use s () because in mod4 and mod5 te () is used and finally, I always use ?cr? and ?cc?. Option 2: a) mod1 <- gam (bm ~ t, data = data) b) mod2 &lt...
2010 Nov 15
1
Executing Command on Multiple R Objects
Hello Everyone - I want to print a number of results from lme function objects out to a txt file. How could I do this more efficiently than what you see here: out2 <- capture.output(summary(mod2a)) out3 <- capture.output(summary(mod3)) out4 <- capture.output(summary(mod5)) out5 <- capture.output(summary(mod6)) out6 <- capture.output(summary(mod7)) cat(out2,file="out.txt",sep="\n",append=TRUE) cat(out3,file="out.txt",sep="\n",append=TRUE) cat(out4,file="out.txt",sep="\n",append=TRUE) cat(out5,file=&qu...
2010 Sep 08
4
coxph and ordinal variables?
Dear R-help members, Apologies - I am posting on behalf of a colleague, who is a little puzzled as STATA and R seem to be yielding different survival estimates for the same dataset when treating a variable as ordinal. Ordered() is used to represent an ordinal variable) I understand that R's coxph (by default) uses the Efron approximation, whereas STATA uses (by default) the Breslow. but we
2009 Oct 08
0
glm pairwise interaction coefficients
...raction coefficients. They also refer to it as linear contrasts in the text. The estimate of the interaction is just the sum of the estimates of the terms in the model, but I would like to also compute a P value for each one. My Model: mod2<-glm(YIELD~G1+G2+L1+L2+M-1, data=subset(foo, N==150)) mod5<-update(mod2, ~.+G1INT+G2INT+L1INT+L2INT) the terms are: comm$G1INT=G1*(1-G1) comm$G2INT=G2*(1-G2) comm$L1INT=L1*(1-L1) comm$L2INT=L2*(1-L2) I have search and mostly come up with talk on contrasts among levels of categorical variables. Any help would be much appreciated. Josh -- View this...
2002 Dec 18
6
Can I build an array of regrssion model?
...s = as.integer(cuts); mod1 = lm(rawData[[2]][1:cuts[1]]~rawData[[1]][1:cuts[1]]); mod2 = lm(rawData[[2]][cuts[1]:cuts[2]]~rawData[[1]][cuts[1]:cuts[2]]); mod3 = lm(rawData[[2]][cuts[2]:cuts[3]]~rawData[[1]][cuts[2]:cuts[3]]); mod4 = lm(rawData[[2]][cuts[3]:cuts[4]]~rawData[[1]][cuts[3]:cuts[4]]); mod5 = lm(rawData[[2]][cuts[4]:cuts[5]]~rawData[[1]][cuts[4]:cuts[5]]); mod6 = lm(rawData[[2]][cuts[5]:cuts[6]]~rawData[[1]][cuts[5]:cuts[6]]); mod7 = lm(rawData[[2]][cuts[6]:cuts[7]]~rawData[[1]][cuts[6]:cuts[7]]); plot(rawData[[1]],rawData[[2]],type='l', col="green", xlab="Da/z...