Displaying 20 results from an estimated 214 matches for "mod1".
Did you mean:
mod
2010 Feb 20
3
aggregating using 'with' function
Hi All,
I am interested in aggregating a data frame based on 2
categories--mean effect size (r) for each 'id's' 'mod1'. The
'with' function works well when aggregating on one category (e.g.,
based on 'id' below) but doesnt work if I try 2 categories. How can
this be accomplished?
# sample data
id<-c(1,1,1,rep(4:12))
n<-c(10,20,13,22,28,12,12,36,19,12, 15,8)
r<-c(.98,.56,.03,.64,.49,-...
2010 Jan 28
2
Data.frame manipulation
...formed a weighted average of effect size
for
each study. This results in a reduced # of rows. I am particularly
interested in
simply reducing the additional variables in the data.frame to the first row
of the
corresponding id variable. For example:
id<-c(1,2,2,3,3,3)
es<-c(.3,.1,.3,.1,.2,.3)
mod1<-c(2,4,4,1,1,1)
mod2<-c("wai","other","calpas","wai","itas","other")
data<-as.data.frame(cbind(id,es,mod1,mod2))
data
id es mod1 mod2
1 1 0.3 2 wai
2 2 0.1 4 other
3 2 0.2 4 calpas
4 3 0....
2009 Jun 17
2
djustment values not defined
Hello,
I am using
mod1 <- lrm(y~x1+x2,na.action=na.pass,method="lrm.fit")
summary(mod1)
and I've got the following error:
Error in summary.Design(mod1) : adjustment values not defined here or with datadist for x1 x2
Many thank,
Amor
[[alternative HTML version deleted]]
2006 Mar 14
1
Ordered logistic regression in R vs in SAS
I tried the following ordered logistic regression in R:
mod1 <- polr(altitude~sp + wind_dir + wind_speed + hr, data=altioot)
But when I asked The summary of my regression I got the folloing error message:
> summary (mod1)
Re-fitting to get Hessian
Error in optim(start, fmin, gmin, method = "BFGS", hessian = Hess, ...) :
the initi...
2009 Mar 05
1
problems with nls?
...residuals, scatterplot.
thanks
SCRIPT
ros<-read.table("Dataset.csv",header=T,sep=",")
ros
attach(ros)
# preliminaries
options(width=44)
options(digits=3)
## Nonlinear Regression
par(mfrow=c(1,2))
attach(ros)
plot(U1.7km, R, main="(a)")
library(nls)
mod1<-nls(R ~
beta1*(U1.7km^beta2)+(Hm^beta3)),start=list(beta1=2.031,beta2=0.800,beta3=-0.255),
trace = TRUE)
summary(mod1)
coef(mod1)
coef(summary(mod1))
lines(R, fitted.values(mod1), lwd=2)
plot(R, residuals(mod1), type="b", main="(b)")
abline(h=0, lty=2)
--
View this mess...
2012 Jun 29
1
number of items to replace is not a multiple of replacement length
...t_yr=y1850_file_no+(startyr-1850)
print("************************************")
filename=paste(file_name,start_yr,".nc",sep="")
print("Opening:")
print(varname)
print("in:")
print(filename)
ncfile=open.ncdf(filename)
mod1=get.var.ncdf(ncfile,varname)
print("------------------------------------")
a=dim(mod1)
print(a)
b=length(a)
if (b==3) {
mod =array(0,dim=c(a[1],a[2],a[3],nyrs))
modi=array(0,dim=a)
} else {
mod =array(0,dim=c(a[1],a[2],1,nyrs))
mod...
2010 Mar 29
1
getting CI's for certain y of nls fitted curve
....186302231, 1, 0.42980063,
0.103882476, 0.086463799), tr = c(513, 235.7, 120.4, 69.4,
318.3, 271.6, 97.5, 59.3, 476.5, 204.8, 49.5, 41.2)), .Names = c("run",
"press", "tr_rel", "tr"), row.names = c(NA, -12L), class = "data.frame")))
summary(mod1<-nls(tr ~ SSlogis( log(press), Asym, xmid, scal),data=por))
press_x <- seq(10, 40, length = 100)
predict(mod1, data.frame(press = press_x))
with(por, plot(press,tr,xlim=c(10,35),ylim=c(0,500)))
lines(press_x, predict(mod1, data.frame(press = press_x)))
###http://finzi.psych.upenn.edu/R/R...
2010 Feb 15
2
creating functions question
...g but is irrelevant for the example):
# sample data:
id<-rep(1:20)
n<-c(10,20,13,22,28,12,12,36,19,12,36,75,33,121,37,14,40,16,14,20)
r<-c(.68,.56,.23,.64,.49,-.04,.49,.33,.58,.18,-.11,.27,.26,.40,.49,
.51,.40,.34,.42,.16)
mod2<-factor(c(rep(c(1,2,3,4),5)))
da<-data.frame(id, n, r, mod1, mod2)
reg0<-lm(da$r ~ 1)
reg1<-lm(da$r ~ da$mod1)
reg2<-lm(da$r ~ da$mod1 + da$mod2)
# This is as far as I get with the function:
MRfit <- function( ...) {
models <- list(...)
fit<- anova(models)
return(fit)
}
MRfit(reg0,reg1,reg2)
# This is what I get from R:
# Error...
2006 Oct 04
1
extracting nested variances from lme4 model
I have a model:
mod1<-lmer( x ~ (1|rtr)+ trth/(1|cs) , data=dtf) #
Here, cs and rtr are crossed random effects.
cs 1-5 are of type TRUE, cs 6-10 are of type FALSE,
so cs is nested in trth, which is fixed.
So for cs I should get a fit for 1-5 and 6-10.
This appears to be the case from the random effects:
> me...
2004 Jul 28
2
Simulation from a model fitted by survreg.
...) since my error terms are assumed to be Weibull, but it does not make any sense. The mean survival time is easy to predict, but I would like to simulate individual survival times.
I am probably missing something completely obvious. Any hints or advice are appreciated.
Thanks
Sixten
> summary(mod1)
Call:
survreg(formula = Surv(tid, study$first.event.death) ~ regim +
age + stadium2, data = study, dist = "weibull")
Value Std. Error z p
(Intercept) 11.6005 0.7539 15.387 2.01e-53
regimposto -0.1350 0.1558 -0.867 3.86e-01
age -0.0362...
2011 Apr 08
1
Variance of random effects: survreg()
...t.seed(1007)
x <- runif(100)
m <- rnorm(10, mean = 1, sd =2)
mu <- rep(m, rep(10,10))
test1 <- data.frame(Time = qsurvreg(x, mean = mu, scale= 0.5, distribution = "weibull"),
Status = rep(1, 100),
Unit = gl(10,10)
)
mod1 <- survreg(Surv(Time, Status) ~ 1 + frailty.gaussian(Unit), data = test1)
> mod1
...
coef se(coef) se2 Chisq DF p
(Intercept) 0.987 0.582 0.0457 2.87 1.00 9.0e-02
frailty.gaussian(Unit) 85.26 8.95 1.4e-14
Scale= 0.434...
2009 Mar 12
1
zooreg and lmrob problem (bug?)
...,620.5187,759.3312,712.9750,606.6688,451.9250,560.2313,
308.1875,551.7687,615.3312,673.1250,678.4562,485.5312,491.8875,568.5688,
689.5750,507.0875,467.9125,539.4875,461.8625,827.3750,507.9250,526.5688,
363.9625,355.8813,585.9750,792.8438,698.6250,625.1063,463.4875,619.4688,
684.9438,815.3438)
> mod1<-lmrob(dad~seq(58))
> summary(mod1)
Call:
lmrob(formula = dad ~ seq(58))
Weighted Residuals:
Min 1Q Median 3Q Max
-291.106 -98.083 0.912 102.219 349.697
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 630.2021 38.5583 16...
2006 Nov 11
1
predict.lda is missing ?
I'm trying to classify some observations using lda and I'm getting a
strange error. I loaded the MASS package and created a model like so:
>train <- mod1[mod1$rand < 1.7,]
>classify <- mod1[mod1$rand >= 1.7,]
>lda_res <- lda(over_win ~ t1_scrd_a + t1_alwd_a, data=train, CV=TRUE)
That works, and all is well until I try to do a prediction for the holdouts:
>lda_pred <- predict(lda_res, classify)$class
Error in predict(lda_res...
2010 Jul 09
1
output without quotes
...column names without quotes and am struggling to
do it properly. The tough part is that I am interested in using these column
names for a function within a function (e.g., lm() within a wrapper
function). Therefore, cat() doesnt seem appropriate and print() is not what
I need. Ideas?
# sample data
mod1 <- rnorm(20, 10, 2)
mod2 <- rnorm(20, 5, 1)
dat <- data.frame(mod1, mod2)
# collapsing the colnames to 'mod1+mod2'
temp <- paste(names(dat), collapse="+")
temp # this gives quotes
print(temp, quote = FALSE) # no quotes but includes [1]
# need the output like this...
2008 Dec 19
0
What BIC is calculated by 'regsubsets'?
...l-subsets selection based
on the AIC rather than the BIC).
The following code defines a function that illustrates the issue.
Thanks
-Paul
script.ic <- function() {
library(datasets)
print(names(airquality)) # Ozone Solar.R Wind Temp Month Day
# Fit a model with two predictors
mod1 <- lm(Ozone ~ Wind + Temp, data=airquality)
npar <- length(mod1$coef)+1 # no. parameters in fitted model,
# including s2, is 4
nobs <- length(mod1$fitted) # no. of observations = 116
s2 <- summary(mod1)$sigma2 # MSE = 477...
2012 Mar 24
0
Help ordinal mixed model!
...set(du, ALT.RENAIS != 'NA')
tabela <- table(du[,c(2,4)])
tabela
colnames(tabela) <- c('Normal','Aguda','Cr?nica')
rownames(tabela) <- c('Pre','Propolis','Vincr')
tabela
#the mixed model:
set.seed(1)
mod1 <- MCMCglmm(ALT.RENAIS ~-1+FASES, random= ~ ANIMAIS,
family='ordinal',pl=TRUE,data=du)
summary(mod1)
Then the pain starts, since the documentation is insufficient in this case.
According to him Jarrod (forums), the a posteriori means of the coefficients
of the covariates are the pro...
2011 Oct 26
2
Error in summary.mlm: formula not subsettable
When I fit a multivariate linear model, and the formula is defined
outside the call to lm(), the method summary.mlm() fails.
This works well:
> y <- matrix(rnorm(20),nrow=10)
> x <- matrix(rnorm(10))
> mod1 <- lm(y~x)
> summary(mod1)
...
But this does not:
> f <- y~x
> mod2 <- lm(f)
> summary(mod2)
Error en object$call$formula[[2L]] <- object$terms[[2L]] <-
as.name(ynames[i]) :
objeto de tipo 'symbol' no es subconjunto
I would say that the problem is in the follo...
2012 May 27
2
Unable to fit model using “lrm.fit”
Hi,
I am running a logistic regression model using lrm library and I get the
following error when I run the command:
mod1 <- lrm(death ~ factor(score), x=T, y=T, data = env1)
Unable to fit model using ?lrm.fit?
where score is a numeric variable from 0 to 6.
LRM executes fine for the following commands:
mod1 <- lrm(death ~ score, x=T, y=T, data = env1)
mod1<- lrm(death ~ factor(score)+...
2012 Mar 10
1
problem with effects : 'subscript out of bounds'
...r", "generalized", "other"))
norway$trust <- tmp
nor.trust <- as.factor(norway$trust) #### nor.trust is my IV, a factor as you can see.
n.diversity <- norway$v221 ## control
n.net <- norway$v228 ##control (there are others but they were coded the same)
n.mod1 <- lm(nor.dem ~ nor.trust + n.diversity + n.age + n.sex + n.educ + famecon + n.net) ### linear model. all of these variables already are specific to the dataset which i called 'norway' so there is no need to specify in the model.
summary(n.mod1)
> plot(effect("nor.trust"...
2010 Jun 23
1
Shapefile
...p$WOLVES_99 %in% 2,];wolfsub
dim(wolfsub)
# 42 = Forest, 51 = Shrub, > 81 = Agriculture
wolfsub$Forest<-ifelse(wolfsub$MAJOR_LC==42,1,0)
wolfsub$Shrub<-ifelse(wolfsub$MAJOR_LC==51,1,0)
wolfsub$Agriculture<-ifelse(wolfsub$MAJOR_LC>81,1,0)
names(wolfsub);dim(wolfsub)
# create the model
mod1<-glm(WOLVES_99~RD_DENSITY+Forest+Shrub
+Agriculture,family=binomial,data=wolfsub)
summary(mod1)
wolfsub$pred99<-fitted(mod1)
names(wolfsub)
#fitted(mod1)
wolfsub$pred99
# Add the wolfsub data to the map to see the map
wolfsub <- fortify(wolfsub);names(wolfsub)
area_mod <- wolves.plot +...