search for: makecc

Displaying 4 results from an estimated 4 matches for "makecc".

2024 May 05
2
lmer error: number of observations <= number of random effects
...ontrol = lmerControl(check.nobs.vs.nRE = "ignore") which gave me the following output. modelLSI_maineff_RE <- lmer(SA ~ Index1* LSI+ (1 + Index1+LSI |ID), data = LSIDATA, control = lmerControl(check.nobs.vs.nRE = "ignore", optimizer ="bobyqa", check.conv.singular = .makeCC(action = "ignore", tol = 1e-4)), REML=TRUE) summary(modelLSI_maineff_RE) Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest'] Formula: SA ~ Index1 * LSI + (1 + Index1 + LSI | ID) Data: LSIDATA Control: lmerControl(check.nobs.vs.nRE = "ig...
2024 May 05
2
lmer error: number of observations <= number of random effects
...ontrol = lmerControl(check.nobs.vs.nRE = "ignore") which gave me the following output. modelLSI_maineff_RE <- lmer(SA ~ Index1* LSI+ (1 + Index1+LSI |ID), data = LSIDATA, control = lmerControl(check.nobs.vs.nRE = "ignore", optimizer ="bobyqa", check.conv.singular = .makeCC(action = "ignore", tol = 1e-4)), REML=TRUE) summary(modelLSI_maineff_RE) Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest'] Formula: SA ~ Index1 * LSI + (1 + Index1 + LSI | ID) Data: LSIDATA Control: lmerControl(check.nobs.vs.nRE = "ig...
2024 May 06
0
[R-sig-ME] lmer error: number of observations <= number of random effects
...ntrol(check.nobs.vs.nRE = "ignore") which gave > me the following output. modelLSI_maineff_RE <- lmer(SA ~ Index1* LSI+ (1 + > Index1+LSI |ID), data = LSIDATA, control = lmerControl(check.nobs.vs.nRE = > "ignore", optimizer ="bobyqa", check.conv.singular = .makeCC(action = > "ignore", tol = 1e-4)), REML=TRUE) > > summary(modelLSI_maineff_RE) > Linear mixed model fit by REML. t-tests use Satterthwaite's method > ['lmerModLmerTest'] > Formula: SA ~ Index1 * LSI + (1 + Index1 + LSI | ID) > Data: LSIDATA > Control: l...
2024 May 06
0
[R] [R-sig-ME] lmer error: number of observations <= number of random effects
...ntrol(check.nobs.vs.nRE = "ignore") which gave > me the following output. modelLSI_maineff_RE <- lmer(SA ~ Index1* LSI+ (1 + > Index1+LSI |ID), data = LSIDATA, control = lmerControl(check.nobs.vs.nRE = > "ignore", optimizer ="bobyqa", check.conv.singular = .makeCC(action = > "ignore", tol = 1e-4)), REML=TRUE) > > summary(modelLSI_maineff_RE) > Linear mixed model fit by REML. t-tests use Satterthwaite's method > ['lmerModLmerTest'] > Formula: SA ~ Index1 * LSI + (1 + Index1 + LSI | ID) > Data: LSIDATA > Control: l...