Displaying 20 results from an estimated 87 matches for "lwr".
Did you mean:
lwn
2012 Oct 08
6
How to use Lines function to draw the error bars?
fit lwr upr
1 218.4332 90.51019 346.3561
2 218.3906 90.46133 346.3198
3 218.3906 90.46133 346.3198
4 161.3982 44.85702 277.9394
5 192.4450 68.39903 316.4909
6 179.8056 56.49540 303.1158
7 219.5406 91.52707 347.5542
8 162.6761 46.65760 278.6945
9 193.8506 70.59838 317.1029
10 181.3816 58...
2008 Nov 19
2
ggplot2; dot plot, jitter, and error bars
With this data
x <- c(0,0,1,1,2,2)
y <- c(5,6,4,3,2,6)
lwr <- y-1
upr <- y+1
xlab <- c("Low","Low","Med","Med","High","High")
mydata <- data.frame(x,xlab,y,lwr,upr)
I would like to make a dot plot and use lwr and upr as error bars.
Above 0=Low. I would like there to be
some space bet...
2011 Feb 07
0
Combining the results from two simple linear regression models
...dict(mb,data.frame(yrs=yrs),interval='confidence')
##combine the two regressions for a single equation with confidence
intervals
pr=pra+prb###it couldn't be this simple, could it?
#by hand
co=coef(ma)+coef(mb)
new.sigma=sqrt(summary(ma)$sigma^2+summary(mb)$sigma^2)
fit=co[1]+co[2]*yrs
lwr= fit - qt(.975,9)*sqrt( new.sigma^2 * ( (1/11) + (
(yrs-mean(yrs))^2)/sum((yrs-mean(yrs))^2) ) )#the df are probably wrong (the
9 in the qt upr= fit + qt(.975,9)*sqrt( new.sigma^2 * ( (1/11) + (
(yrs-mean(yrs))^2)/sum((yrs-mean(yrs))^2) ) )# statement)
I can't print the graph here, so here'...
2010 Jul 27
1
problem with zero-weighted observations in predict.lm?
...as follows, where
predw is the prediction from the fit that used
0-weights and preds is from using FALSE's in the
subset argument. Is this difference proper?
predw preds
$fit $fit
fit lwr upr fit lwr upr
1 1.544302 1.389254 1.699350 1 1.544302 1.194879 1.893724
2 1.935504 1.719482 2.151526 2 1.935504 1.448667 2.422341
$se.fit $se.fit
1 2...
2013 Jan 30
2
How does predict() calculate prediction intervals?
...)
## Calculating t-dist, 2-tailed, 95% prediction intervals for new
observations
mse <- anova(mod)[2,3]
new.x <- obs$X - mean(dat$X)
sum.x2 <- sum((dat$X - mean(dat$X))^2)
y.hat <- pred$fit
var.y.hat <- mse*(1+new.x^2/sum.x2)
upr <- y.hat + qt(c(0.975), df = 8) * sqrt(var.y.hat)
lwr <- y.hat + qt(c(0.025), df = 8) * sqrt(var.y.hat)
hand <- data.frame(cbind(y.hat, lwr, upr))
#The limits are not the same
pred
hand
--
Thank you,
Kurt
[[alternative HTML version deleted]]
2011 Apr 03
1
style question
Hi everyone,
I am trying to build a table putting standard errors horizontally. I
haven't been able to do it.
library(memisc)
berkeley <- aggregate(Table(Admit,Freq)~.,data=UCBAdmissions)
berk0 <- glm(cbind(Admitted,Rejected)~1,data=berkeley,family="binomial")
berk1 <-
glm(cbind(Admitted,Rejected)~Gender,data=berkeley,family="binomial")
berk2 <-
2016 Apr 21
5
Calcular Error en modelo lineal
...de estos. Ten en cuenta que el 2do tipo de intervalos de calcula para observaciones _futuras_.
En R puedes calcularlos de la siguiente manera:
## IC de confianza## ver ?predict.lm para mas detallesR> data.frame(y, predict(modelo, interval = "confidence"))
y fit lwr upr#1 8.35 9.938571 6.580445 13.29670#2 12.42 11.804286 9.134239 14.47433#3 18.00 15.535714 13.664949 17.40648#4 17.58 17.401429 15.396872 19.40599#5 17.97 19.267143 16.798908 21.73538#6 20.76 21.132857 18.014915 24.25080
## intervalos de prediccion para x = 25
R> predict(modelo, newdat...
2010 Apr 29
1
R Anova Analysis
...0.4000000 mCREB
7 1.0000000 No Virus
8 1.0000000 No Virus
9 1.0000000 No Virus
> TukeyHSD(aov(Values ~ ind, data = nmda456))
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = Values ~ ind, data = nmda456)
$ind
diff lwr upr p adj
mCREB-CREB -6.0666126 -6.3289033 -5.8043219 0.0000000
No Virus-CREB -5.3921477 -5.6544383 -5.1298570 0.0000000
No Virus-mCREB 0.6744649 0.4121743 0.9367556 0.0005382
> TukeyHSD(aov(Values ~ ind, data = nmda123))
Tukey multiple comparisons of means
95% famil...
2006 Sep 15
2
prediction interval for new value
Hi,
1. How do I construct 95% prediction interval for new x values, for example - x = 30000?
2. How do I construct 95% confidence interval?
my dataframe is as follows :
>dt
structure(list(y = c(26100000,
60500000, 16200000, 30700000, 70100000, 57700000, 46700000, 8600000,
10000000, 61800000, 30200000, 52200000, 71900000, 55000000, 12700000
), x = c(108000, 136000,
2013 May 17
2
zigzag confidence interval in a plot
...A,cd$Depth, ylim = rev(range(0:100)), xlab="CHAO", ylab="Depth", pch=15, las=2, main="Sep12-RNA", cex.main=1)
> lmR <- lm(cd$Depth~cd$CHAOsep12RNA)
> abline(lmR)
pconfR <- predict(lmR,interval="confidence")
matlines(cd$CHAOsep12RNA,pconfR[,c("lwr","upr")], col=1, lty=2)
I also tried
> newx <- seq(min(cd$CHAOsep12RNA), max(cd$CHAOsep12RNA), length.out=11)
> a <- predict(lmR, newdata=data.frame(CHAO=newx), interval=c("confidence"))
> plot(cd$CHAOsep12RNA,cd$Depth, ylim = rev(range(0:100)), xlab="...
2017 Jun 12
2
plotting gamm results in lattice
...t;)
I am trying to plot the results in lattice for publication purposes so I need to figure this out. I have been struggling but I think I have reached a dead end.?
Here is what I have been able to code:
M<-predict(model$gam,type="response",se.fit=T)
upr<- M$fit + (1.96 * M$se.fit)lwr<- M$fit - (1.96 * M$se.fit)
library(lattice)xyplot(fitted(model$gam) ~ Q95 |super.end.group, data = spring, gm=model,? ? ? ?prepanel=function (x,y,...)list(ylim=c(min(upr),max(lwr))),? ? ? ?panel = function(x,y, gm, ...){ ? ??? ? ? ? ?panel.xyplot(x,y, type="smooth")? ? ? ? ?panel.line...
2005 Jul 15
1
Adjusted p-values with TukeyHSD (patch)
.../TukeyHSD.R 2005-07-15 02:43:25.055207448 -0300
@@ -66,10 +66,12 @@
center <- center[keep]
width <- qtukey(conf.level, length(means), x$df.residual) *
sqrt((MSE/2) * outer(1/n, 1/n, "+"))[keep]
- dnames <- list(NULL, c("diff", "lwr", "upr"))
+ est <- center/(sqrt((MSE/2) * outer(1/n, 1/n, "+"))[keep])
+ pvals <- ptukey(abs(est),length(means),x$df.residual,lower.tail=FALSE)
+ dnames <- list(NULL, c("diff", "lwr", "upr","p adj"))...
2008 Apr 28
0
restricting pairwise comparisons of interaction effects
...f. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
> TukeyHSD(fm1,conf.level=0.90)
Tukey multiple comparisons of means
90% family-wise confidence level
Fit: aov(formula = breaks ~ wool * tension, data = warpbreaks)
$wool
diff lwr upr p adj
B-A -5.777778 -10.77183 -0.7837284 0.058213
$tension
diff lwr upr p adj
M-L -10.000000 -17.66710 -2.332900 0.0228554
H-L -14.722222 -22.38932 -7.055122 0.0005595
H-M -4.722222 -12.38932 2.944878 0.4049442
$`wool:tension`
diff l...
2013 Sep 22
2
colores
Como usas la función image puedes consultar la ayuda ?image o help(image) y
encontrarás el siguiente ejemplo donde se usa un diferente color Palette
(mencionada por pepeceb en su respuesta).
x <- 10*(1:nrow(volcano))
y <- 10*(1:ncol(volcano))
image(x, y, volcano, col = terrain.colors(100), axes = FALSE)
# O puedes usar directamente el número para indicar el color
image(x, y, volcano, col =
2012 Nov 13
2
Tukey test for subgroups in a data frame
Hello,
I have a data frame with the following columns: "date","name","value"
the name is the same for each date
I would like to get TukeyHSD p-value for the differences of "value" between
"name"s in each "date" separately I tried different ANOVA (aov()) but can
only get either tukey by "name" or by "data" but not
2009 Sep 04
1
predicting from segmented regression
Hello
I'm having trouble figuring out how to use the output of "segmented()"
with a new set of predictor values.
Using the example of the help file:
??set.seed(12)
xx<-1:100
zz<-runif(100)
yy<-2+1.5*pmax(xx-35,0)-1.5*pmax(xx-70,0)+15*pmax(zz-.5,0)+rnorm(100,0,2)
dati<-data.frame(x=xx,y=yy,z=zz)
out.lm<-lm(y~x,data=dati)
o<-## S3
2016 Apr 21
2
Calcular Error en modelo lineal
Buenas, una pregunta.
Si yo estoy calculando un modelo lineal, el caso más simple, 1 variable respuesta y una variable explicativa y creo un modelo, me da un R2 del 80% y quiero ver como es esa relacion entre las variables, para calcular el error de predicción del modelo, basta con ver el intervalo de confianza del modelo e irme a los extremos?
Por si no me he expresado bien, un ejemplo tonto:
2013 Sep 22
0
colores
...image(cps_bkde$x1, cps_bkde$x2, cps_bkde$fhat,
col = rev(gray.colors(10, gamma = 1)),
############################AQUI PARA CAMBIAR Y PONER TONOS ROJIZOS MAS
FUERTES xlab = "experience", ylab = "log(wage)")
box()
lines(fit ~ experience, data = cps2)
lines(lwr ~ experience, data = cps2, lty = 2)
lines(upr ~ experience, data = cps2, lty = 2)
image(cps_bkde$x1, cps_bkde$x2, cps_bkde$fhat,
col = rev(terrain.colors(10, alpha = 1)),
xlab = "experience", ylab = "log(wage)")
box()
lines(fit ~ experience, dat...
2013 Feb 28
0
[LLVMdev] [cfe-dev] [MIPS] How can I add a constraint to LLVM/Clang for MIPS BE?
...;out is %d\n", out);
p = &b;
__asm volatile (
"lw %0, %1\n\t"
: "=r"(out)
: "R"(*p)
);
printf("out is %d\n", out);
p = &c;
__asm volatile (
"lwl %0, 1 + %1\n\t"
"lwr %0, 2 + %1\n\t"
: "=r"(out)
: "R"(*p)
);
printf("out is %x\n", out);
return 0;
}
LLVM-MIPS-BE diff:
diff --git a/lib/Target/Mips/MipsISelLowering.cpp
b/lib/Target/Mips/MipsISelLowering.cpp
index 36e1a15..4a5d045 100644
--- a/lib/T...
2018 May 01
2
Alignment Member Functions should be Virtual
Dear community,
I have developed a backend of new 32-bit RISC ISA, which does not have
unaligned memory access instructions (e.g., LWL, LWR, SWL, and SWR in
MIPS).
Since char and short variables are not 32-bit alignment, these
variables cannot be correctly accessed.
Therefore, alignment member functions, especially getCharAlign() and
getShortAlign() of TargetInfo class in
clang/include/clang/Basic/TargetInfo.h, should be virtual, in or...