Displaying 4 results from an estimated 4 matches for "lmermodlmertest".
2024 May 05
2
lmer error: number of observations <= number of random effects
...data = LSIDATA, control = lmerControl(check.nobs.vs.nRE =
"ignore", optimizer ="bobyqa", check.conv.singular = .makeCC(action =
"ignore", tol = 1e-4)), REML=TRUE)
summary(modelLSI_maineff_RE)
Linear mixed model fit by REML. t-tests use Satterthwaite's method
['lmerModLmerTest']
Formula: SA ~ Index1 * LSI + (1 + Index1 + LSI | ID)
Data: LSIDATA
Control: lmerControl(check.nobs.vs.nRE = "ignore", optimizer = "bobyqa",
check.conv.singular = .makeCC(action = "ignore", tol = 1e-04))
REML criterion at convergence: 7299.6
Scaled residuals:
Mi...
2024 May 05
2
lmer error: number of observations <= number of random effects
...data = LSIDATA, control = lmerControl(check.nobs.vs.nRE =
"ignore", optimizer ="bobyqa", check.conv.singular = .makeCC(action =
"ignore", tol = 1e-4)), REML=TRUE)
summary(modelLSI_maineff_RE)
Linear mixed model fit by REML. t-tests use Satterthwaite's method
['lmerModLmerTest']
Formula: SA ~ Index1 * LSI + (1 + Index1 + LSI | ID)
Data: LSIDATA
Control: lmerControl(check.nobs.vs.nRE = "ignore", optimizer = "bobyqa",
check.conv.singular = .makeCC(action = "ignore", tol = 1e-04))
REML criterion at convergence: 7299.6
Scaled residuals:
Mi...
2024 May 06
0
[R-sig-ME] lmer error: number of observations <= number of random effects
...rControl(check.nobs.vs.nRE =
> "ignore", optimizer ="bobyqa", check.conv.singular = .makeCC(action =
> "ignore", tol = 1e-4)), REML=TRUE)
>
> summary(modelLSI_maineff_RE)
> Linear mixed model fit by REML. t-tests use Satterthwaite's method
> ['lmerModLmerTest']
> Formula: SA ~ Index1 * LSI + (1 + Index1 + LSI | ID)
> Data: LSIDATA
> Control: lmerControl(check.nobs.vs.nRE = "ignore", optimizer = "bobyqa",
> check.conv.singular = .makeCC(action = "ignore", tol = 1e-04))
>
> REML criterion at convergence:...
2024 May 06
0
[R] [R-sig-ME] lmer error: number of observations <= number of random effects
...rControl(check.nobs.vs.nRE =
> "ignore", optimizer ="bobyqa", check.conv.singular = .makeCC(action =
> "ignore", tol = 1e-4)), REML=TRUE)
>
> summary(modelLSI_maineff_RE)
> Linear mixed model fit by REML. t-tests use Satterthwaite's method
> ['lmerModLmerTest']
> Formula: SA ~ Index1 * LSI + (1 + Index1 + LSI | ID)
> Data: LSIDATA
> Control: lmerControl(check.nobs.vs.nRE = "ignore", optimizer = "bobyqa",
> check.conv.singular = .makeCC(action = "ignore", tol = 1e-04))
>
> REML criterion at convergence:...