Displaying 7 results from an estimated 7 matches for "lmercontrol".
2024 May 05
2
lmer error: number of observations <= number of random effects
...her column. I used the code below to run my model using lmer. However,
I get the following error. Please let me know how I can solve this error.
Please note that I have 50% missing data in SA at age 12.
modelLSI_maineff_RE <- lmer(SA ~ Index1* LSI+ (1 + Index1+LSI |ID), data =
LSIDATA, control = lmerControl(optimizer ="bobyqa"), REML=TRUE)
summary(modelLSI_maineff_RE)
Error: number of observations (=1080) <= number of random effects (=1479)
for term (1 + Index1 + LSI | ID); the random-effects parameters and the
residual variance (or scale parameter) are probably unidentifiable
I did test...
2024 May 05
2
lmer error: number of observations <= number of random effects
...her column. I used the code below to run my model using lmer. However,
I get the following error. Please let me know how I can solve this error.
Please note that I have 50% missing data in SA at age 12.
modelLSI_maineff_RE <- lmer(SA ~ Index1* LSI+ (1 + Index1+LSI |ID), data =
LSIDATA, control = lmerControl(optimizer ="bobyqa"), REML=TRUE)
summary(modelLSI_maineff_RE)
Error: number of observations (=1080) <= number of random effects (=1479)
for term (1 + Index1 + LSI | ID); the random-effects parameters and the
residual variance (or scale parameter) are probably unidentifiable
I did test...
2007 Dec 27
2
Problem of lmer under FreeBSD
...ot under
Windows. Anyone knows why? Thanks.
> example(lmer)
lmer> (fm1 <- lmer(Reaction ~ Days + (Days|Subject), sleepstudy))
Error in UseMethod("as.logical") : no applicable method for "as.logical"
> traceback()
9: as.logical(EMverbose)
8: as.logical(EMverbose)
7: lmerControl()
6: do.call("lmerControl", control)
5: lmer(Reaction ~ Days + (Days | Subject), sleepstudy)
4: eval.with.vis(expr, envir, enclos)
3: eval.with.vis(ei, envir)
2: source(zfile, local, echo = echo, prompt.echo = paste(prompt.prefix,
getOption("prompt"), sep = ""),...
2024 May 06
0
[R-sig-ME] lmer error: number of observations <= number of random effects
...he code below to run my model using lmer. However,
> I get the following error. Please let me know how I can solve this error.
> Please note that I have 50% missing data in SA at age 12.
> modelLSI_maineff_RE <- lmer(SA ~ Index1* LSI+ (1 + Index1+LSI |ID), data =
> LSIDATA, control = lmerControl(optimizer ="bobyqa"), REML=TRUE)
> summary(modelLSI_maineff_RE)
> Error: number of observations (=1080) <= number of random effects (=1479)
> for term (1 + Index1 + LSI | ID); the random-effects parameters and the
> residual variance (or scale parameter) are probably uniden...
2024 May 06
0
[R] [R-sig-ME] lmer error: number of observations <= number of random effects
...he code below to run my model using lmer. However,
> I get the following error. Please let me know how I can solve this error.
> Please note that I have 50% missing data in SA at age 12.
> modelLSI_maineff_RE <- lmer(SA ~ Index1* LSI+ (1 + Index1+LSI |ID), data =
> LSIDATA, control = lmerControl(optimizer ="bobyqa"), REML=TRUE)
> summary(modelLSI_maineff_RE)
> Error: number of observations (=1080) <= number of random effects (=1479)
> for term (1 + Index1 + LSI | ID); the random-effects parameters and the
> residual variance (or scale parameter) are probably uniden...
2006 Mar 16
1
lme4/Matrix: Call to .Call("mer_update_y"...) and LMEoptimize gives unexpected side effect...
...st by Doug Bates).
So I did:
fm2 <- lmer(resistance ~ ET + position + (1|Grp), Semiconductor,method='ML')
simdata<-simulate(fm2,nsim=1)
ynew <- simdata[,1]
mer <- fm2
.Call("mer_update_y", mer, ynew, PACKAGE = "Matrix")
mer1u <- LMEoptimize(mer, lmerControl(mer))
What puzzles me is that this call alters my original model fm2 as some kind of side effect. In fact, after the call fm2 is the same as mer1u. Is this side effect intentional and is it possible to avoid?
A detail is that "LMEoptmize" and "LMEoptimize<-" are not exporte...
2007 Jan 26
0
R crash with modified lmer code
...a.action, offset, contrasts = NULL, model = TRUE,
matDimI = matDim, rand_matI = rand_mat, ...)
{
method <- match.arg(method)
formula <- as.formula(formula)
if (length(formula) < 3)
stop("formula must be a two-sided formula")
cv <- do.call("lmerControl", control)
mc <- match.call()
fr <- lmerFrames(mc, formula, data, contrasts)
if (matDimI[1] != length(fr$Y))
stop("forSmoothing is not a sensible length")
#insert
Y <- fr$Y
X <- fr$X
weights <- fr$weights
offset <...