Displaying 9 results from an estimated 9 matches for "itermax".
Did you mean:
iterm
2010 Jun 04
2
Help with iteration using while loop
...K*Time + M*S*log(1+ Fpi/(M*S))
while((Fpt-Fpi) > tolerance) {
Fpi = Fpt
Fpt = K*Time + M*S*log(1+ Fpi/(M*S))
Fp0 = Fpt
}
return(Fpt)
}
x<- iter(Fpi = 0.224, Time = 0.2, tolerance = 0.000001)
But I want do something like this ( conceptually)
for( i in 2:itermax) {
Fpt[i] = K*Time + M*S*log(1+ Fpi/(M*S))
if((Fpt[i]- Fpt[i-1])<= tolerance) break
print(Fpt[i]
}
something like this.
any kind of help is highly appreciated.
thank you
--
Acharya, Subodh
[[alternative HTML version deleted]]
2012 Jul 02
0
Fit circle with R
...y;
Cov_xy = Mxx*Myy - Mxy*Mxy;
Mxz2 = Mxz*Mxz;
Myz2 = Myz*Myz;
A2 = 4*Cov_xy - 3*Mz*Mz - Mzz;
A1 = Mzz*Mz + 4*Cov_xy*Mz - Mxz2 - Myz2 - Mz*Mz*Mz;
A0 = Mxz2*Myy + Myz2*Mxx - Mzz*Cov_xy - 2*Mxz*Myz*Mxy + Mz*Mz*Cov_xy;
A22 = A2 + A2;
epsilon=1e-12;
ynew=1e+20;
IterMax=20;
xnew = 0;
# Newton's method starting at x=0
epsilon=1e-12;
ynew=1e+20;
IterMax=20;
xnew = 0;
iter=1:IterMax
for (i in 1:IterMax){
yold = ynew;
ynew = A0 + xnew*(A1 + xnew*(A2 + 4.*xnew*xnew));
if (abs(ynew) > abs(yold)){...
2013 Jan 16
1
Help with a parallel process
...]
A2=A[2]
A3=A[3]
regm1 <-
nnet(Xcc,Ycr,entropy=T,size=A1,decay=A2,maxit=2000,trace=F,Hess=T,rang=A3,skip=T)
dif=sum((predict(regm1,Xcc)-Ycr)^2)
return(dif)
}
somar=DEoptim(pred_regm1,c(1,0.00001,0.01), c(25,0.999,0.95),
control = DEoptim.control(steptol=25,trace =
FALSE,itermax=500,parallelType=1))
but implemented parallel process, i have next error:
Error en checkForRemoteErrors(val) : 4 nodes produced errors; first
error: could not find function "nnet"
how I can solve my mistake?
Thanks and kind regards
--
David Zamora Ávila (I.C.)
Estudiante de la M...
2002 Feb 20
2
Clustering and Calinski's index
...he Calinski index ( [tr(b)/(k-1)]/[tr(w)/(k-1)] ) which i try to maximize
to have the best number of clusters.
A function is already implemented in R to calculate this index :
clustIndex(cl,x, index="calinski")
where cl is the result of a clustering method , for instance:
cclust(x,k,itermax,verbose=TRUE,method="kmeans")
My probleme is that I can't calculate the Calinski's index when a cluster
contains only one datapoint :
Error in cov(x[cluster == l, ]) : supply both x and y or a matrix-like x
Is there a way to solve this?
thanx for your help,
David
-.-.-.-.-...
2004 Mar 09
1
Package cclust error
...clusters.
> A function is already implemented in R to calculate this index :
>
> clustIndex(cl,x, index="calinski")
Where is that from? It's not part of R -- package cclust, perhaps?
> where cl is the result of a clustering method , for instance:
>
> cclust(x,k,itermax,verbose=TRUE,method="kmeans")
>
> My probleme is that I can't calculate the Calinski's index when a cluster
> contains only one datapoint :
>
> Error in cov(x[cluster == l, ]) : supply both x and y or a matrix-like x
The programmer forgot drop=FALSE, it would se...
2013 Feb 20
2
'gmm' package: How to pass controls to a numerical solver used in the gmm() function?
Hello --
The question I have is about the gmm() function from the 'gmm' package
(v. 1.4-5).
The manual accompanying the package says that the gmm() function is
programmed to use either of four numerical solvers -- optim, optimize,
constrOptim, or nlminb -- for the minimization of the GMM objective
function.
I wonder whether there is a way to pass controls to a solver used
while calling
2004 Jul 02
0
(PR#7045) Re: homals: Error in y[g[i, j], ] : incorrect number
...gt;
> > homals(x, sets=0, ndim=3, active=T, rank=3, level="NO", starplots=FALSE,
> + catplots=FALSE, trfplots=FALSE, lossplots=FALSE, hullplots=FALSE,
> + spanplots=FALSE, graphplot=TRUE, objplot=TRUE, objscores=TRUE,
> + objlabel=TRUE, offset=1.20, eps1 = -Inf, eps2=1e-5, itermax=32,
> + voronoi=FALSE, saveMe=TRUE, demo=FALSE, timer=FALSE, tk=FALSE)
> Iteration: 1 Eigenvalues: 0.275420 0.182711 0.117240 Gain: 0.575371
> 0.981319
> Iteration: 2 Eigenvalues: 0.284051 0.185338 0.129728 Gain: 0.599117
> 0.992531
> Iteration: 3 Eig...
2009 May 22
0
EM algorithm mixture of multivariate
...highlight.3d=TRUE, col.axis="blue",
col.grid="lightblue",main="val iniz mistura normali multivariata",
angle=120, pch=20)
#verosimiglianza iniziale
l0<-sum(log(p))
l1<-l0
alpha<-alpha0
mu1<-mu01
mu2<-mu02
sd1<-sd01
sd2<-sd02
for (iter in 1:itermax)
{
#passo E
for (i in 1:n) {
tau[i,1]<-(alpha*f1[i])/p[i]
tau[i,2]<-((1-alpha)*f2[i])/p[i]
}
#passo M
alpha= mean(tau[,1])
mu1=colSums(tau[,1]*y)/sum(tau[,1])
mu2=colSums(tau[,2]*y)/sum(tau[,2])
ycen1<-(y-mu1)
ycen2<-(y-mu2)
cov1<-matrix(0,2,2)
cov2<-matrix(0,2,2)
for (i...
2009 May 22
0
EM algorithm mixture of multivariate gaussian
...highlight.3d=TRUE, col.axis="blue",
col.grid="lightblue",main="val iniz mistura normali multivariata",
angle=120, pch=20)
#verosimiglianza iniziale
l0<-sum(log(p))
l1<-l0
alpha<-alpha0
mu1<-mu01
mu2<-mu02
sd1<-sd01
sd2<-sd02
for (iter in 1:itermax)
{
#passo E
for (i in 1:n) {
tau[i,1]<-(alpha*f1[i])/p[i]
tau[i,2]<-((1-alpha)*f2[i])/p[i]
}
#passo M
alpha= mean(tau[,1])
mu1=colSums(tau[,1]*y)/sum(tau[,1])
mu2=colSums(tau[,2]*y)/sum(tau[,2])
ycen1<-(y-mu1)
ycen2<-(y-mu2)
cov1<-matrix(0,2,2)
cov2<-matrix(0,2,2)
for (i...