Displaying 20 results from an estimated 25 matches for "invwt".
Did you mean:
invt
2005 Dec 27
2
glmmPQL and variance structure
Dear listers,
glmmPQL (package MASS) is given to work by repeated call to lme. In the
classical outputs glmmPQL the Variance Structure is given as " fixed
weights, Formula: ~invwt". The script shows that the function
varFixed() is used, though the place where 'invwt' is defined remains
unclear to me. I wonder if there is an easy way to specify another
variance structure (eg varPower, etc..), preferably using an lme object
of the varFunc classes ? Some tria...
2013 Jun 07
1
gamm in mgcv random effect significance
...Xr7 Xr8 Residual
StdDev: 0.0004377781 0.0004377781 0.0004377781 0.0004377781 0.0004377781
0.0004377781 0.0004377781 0.0004377781 1.693177
Correlation Structure: AR(1)
Formula: ~1 | g
Parameter estimate(s):
Phi
0.3110725
Variance function:
Structure: fixed weights
Formula: ~invwt
Number of Observations: 264
Number of Groups: 1
$gam
Family: binomial
Link function: logit
Formula:
y ~ s(xc) + z + int
Estimated degrees of freedom:
1 total = 4
attr(,"class")
[1] "gamm" "list"
****************************
> g2
$lme
Linear mixed-effects mode...
2005 Jan 05
0
lme, glmmPQL, multiple random effects
...,
2.27586790674987,
-2.49392989051313, 2.27586790674987, 3.09612363937901,
2.27586790674987,
3.09612363937901, 2.27586790674987, -2.49392989051313,
2.27586790674987,
-2.49392989051313, -2.48603224779624, 3.09612363937901,
2.27586790674987,
-2.49392989051313), invwt = c(5.11362806892812, 4.49999834749486,
5.11362806892812, 4.49999834749486, 5.11362806892812,
4.49999834749486,
5.11362806892812, 4.49999834749486, 5.11362806892812,
4.49999834749486,
5.11362806892812, 4.49999834749486, 5.11362806892812,
4.49999834749486,
5.113...
2005 Aug 20
1
glmmPQL and Convergence
...lmmPQL)
Linear mixed-effects model fit by maximum likelihood
Data: fernando
AIC BIC logLik
30.51277 49.25655 -9.256384
Random effects:
Formula: ~1 | subject
(Intercept) Residual
StdDev: 8.284993 4.113725e-09
Variance function:
Structure: fixed weights
Formula: ~invwt
Fixed effects: ifelse(class == "Disease", 1, 0) ~ age + x1 + x2
Value Std.Error DF t-value p-value
(Intercept) -35.01862 2.4414559 123 -14.3 0
age 0.59026 0.0441817 123 13.4 0
x1 1.39317 0.0000014 41 1000507.2 0
x...
2011 May 16
4
Problem on glmer
...by maximum likelihood
Data: wc2
Log-likelihood: NA
Fixed: LOSS ~ YR + offset(log(PR))
(Intercept) YR
-4.2830507147 0.0005085944
Random effects:
Formula: ~1 | CL
(Intercept) Residual
StdDev: 0.8313193 0.5346455
Variance function:
Structure: fixed weights
Formula: ~invwt
Number of Observations: 700
Number of Groups: 100
> fit2
Error in asMethod(object) : matrix is not symmetric [1,2]
Wayne (Yanwei) Zhang
Statistical Research
CNA
Email: Yanwei.Zhang@cna.com<mailto:Yanwei.Zhang@cna.com>
NOTICE: This e-mail message, including any attachments and appe...
2002 Jul 01
1
glmmPQL
...ummy.glmm20)
Linear mixed-effects model fit by maximum likelihood
Data: dummy20
AIC BIC logLik
10270.78 10293.19 -5131.392
Random effects:
Formula: ~1 | ID
(Intercept) Residual
StdDev: 50.55603 0.7928198
Variance function:
Structure: fixed weights
Formula: ~invwt
Fixed effects: y ~ x
Value Std.Error DF t-value p-value
(Intercept) -88.62246 11.686506 1979 -7.583316 <.0001
x 0.08768 0.002913 1979 30.099686 <.0001
Correlation:
(Intr)
x -0.252
Standardized Within-Group Residuals:
Min Q1 Med...
2006 Jul 03
1
gamm
...063304 0.0001063304 0.0001063304
Xr.46 Xr.47 Xr.48
StdDev: 0.0001063304 0.0001063304 0.0001063304
Formula: ~1 | fac %in% g.4 %in% g.3 %in% g.2 %in% g.1
(Intercept) Residual
StdDev: 0.6621173 1.007227
Variance function:
Structure: fixed weights
Formula: ~invwt
Fixed effects: y.0 ~ X - 1
Value Std.Error DF t-value p-value
X(Intercept) 2.0870364 0.3337787 392 6.252755 0.0000
Xs(x0)Fx1 -0.0000325 0.1028794 392 -0.000316 0.9997
Xs(x1)Fx1 0.3831694 0.0957323 392 4.002509 0.0001
Xs(x2)Fx1 1.4584330 0.3909237 392 3.73073...
2011 Mar 17
1
generalized mixed linear models, glmmPQL and GLMER give very different results that both do not fit the data well...
...ion 3
iteration 4
iteration 5
iteration 6
Linear mixed-effects model fit by maximum likelihood
Data: syllogisms
AIC BIC logLik
NA NA NA
Random effects:
Formula: ~1 | subject
(Intercept) Residual
StdDev: 1.817202 0.8045027
Variance function:
Structure: fixed weights
Formula: ~invwt
Fixed effects: accuracy ~ f_power * f_type
Value Std.Error DF t-value p-value
(Intercept) 1.1403334 0.4064642 599 2.805496 0.0052
f_powerhp 0.0996481 0.5683296 83 0.175335 0.8612
f_powerlow 1.5358270 0.6486150...
2006 Jan 10
1
extracting coefficients from lmer
...lmmPQL.fit)$tTable
Linear mixed-effects model fit by maximum likelihood
Data: df
AIC BIC logLik
1800.477 1840.391 -890.2384
Random effects:
Formula: ~1 | subject
(Intercept) Residual
StdDev: 0.6355517 0.9650671
Variance function:
Structure: fixed weights
Formula: ~invwt
Fixed effects: score ~ x * type
Value Std.Error DF t-value p-value
(Intercept) -0.0812834 0.2933314 294 -0.2771043 0.7819
x1 0.4143072 0.4180624 98 0.9910176 0.3241
type2 0.8509166 0.4084443 294 2.0833112 0.0381
type3 0.6691275 0.4024369 294 1.662...
2008 Dec 06
1
Questions on the results from glmmPQL(MASS)
...1 | ID,family = binomial,
data = bacteria))
Linear mixed-effects model fit by maximum likelihood
Data: bacteria
AIC BIC logLik
NA NA NA
Random effects:
Formula: ~1 | ID
(Intercept) Residual
StdDev: 1.410637 0.7800511
Variance function:
Structure: fixed weights
Formula: ~invwt
Fixed effects: y ~ trt + I(week > 2)
Value Std.Error DF t-value
p-value
(Intercept) 3.412014 0.5185033 169 6.580506 0.0000
trtdrug -1.247355 0.6440635 47 -1.936696 0.0588
trtdrug+ -0.754327 0.6453978 47...
2008 Nov 19
1
F-Tests in generalized linear mixed models (GLMM)
...ons: 20
iteration 1
> summary(glm1.gamma$lme)
Linear mixed-effects model fit by maximum likelihood
Data: data
AIC BIC logLik
847.722 866.241 -418.861
Random effects:
Formula: ~1 | random1
(Intercept) Residual
StdDev: 2.954058e-05 0.9775214
Variance function:
Structure: fixed weights
Formula: ~invwt
Fixed effects: list(fixed)
Value Std.Error DF t-value p-value
X(Intercept) 5.066376 0.08363392 295 60.57801 0e+00
Xx1TRUE 0.884486 0.11421762 295 7.74387 0e+00
Xx2 0.234537 0.05851689 295 4.00802 1e-04
Correlation:
X(Int) X1TRUE
Xx1TRUE -0.733
Xx2 -0.008 0.085
Standardized Within-Group Residuals:...
2006 Nov 20
4
for help about logistic regression model
...del fit by maximum likelihood
Data: p5
AIC BIC logLik
NA NA NA
Random effects:
Formula: ~1 | p
(Intercept)
StdDev: 0.1165222
Formula: ~1 | aa %in% p
(Intercept) Residual
StdDev: 0.6551498 0.9735705
Variance function:
Structure: fixed weights
Formula: ~invwt
Fixed effects: Y ~ 1
Value Std.Error DF t-value p-value
(Intercept) -0.1256839 0.1117682 938 -1.124505 0.2611
Standardized Within-Group Residuals:
Min Q1 Med Q3 Max
-1.4693363 -0.8816572 -0.5038361 0.9541089 2.0939872
Number of Observa...
2002 May 31
0
Convergence and singularity in glmmPQL
...AIC BIC logLik
35838.51 35864.14 -17915.26
Random effects:
Formula: ~1 | groupid
(Intercept)
StdDev: 0.9113356
Formula: ~1 | participantid %in% groupid
(Intercept) Residual
StdDev: 1.222692 0.8411629
Variance function:
Structure: fixed weights
Formula: ~invwt
Fixed effects: r.info.doubt ~ 1
Value Std.Error DF t-value p-value
(Intercept) -5.523606 0.3170107 4351 -17.42404 <.0001
Standardized Within-Group Residuals:
Min Q1 Med Q3 Max
-0.54548030 -0.06825715 -0.05379631 -0.04567625 18.29...
2011 Mar 04
1
AIC on GLMM pscl package
...t by maximum likelihood
Data: dados
AIC BIC logLik
NA NA NA
Random effects:
Formula: ~1 | animal
(Intercept)
StdDev: 0.4235518
Formula: ~1 | idfid %in% animal
(Intercept) Residual
StdDev: 0.947683 1.752526
Variance function:
Structure: fixed weights
Formula: ~invwt
Fixed effects: allclues ~ cycloc + male
Value Std.Error DF t-value p-value
(Intercept) 1.8050720 0.2653779 333 6.801892 0.0000
cycloc 0.0718826 0.0128099 181 5.611469 0.0000
male1 -0.6254748 0.3552453 5 -1.760684 0.1386
Correlation:
(Intr) cycloc
c...
2004 Nov 30
0
glmmPQL
...e following results:
Linear mixed-effects model fit by maximum likelihood
Data: new
AIC BIC logLik
53238.5 53260.74 -26616.25
Random effects:
Formula: ~1 | GRUPO
(Intercept) Residual
StdDev: 0.3402137 0.9952645
Variance function:
Structure: fixed weights
Formula: ~invwt
Fixed effects: POS ~ 1
Value Std.Error DF t-value p-value
(Intercept) 0.6214472 0.03723763 12025 16.68869 0
Standardized Within-Group Residuals:
Min Q1 Med Q3 Max
-1.7831032 -1.2642113 0.6508504 0.7058691 1.1945426
Number of O...
2009 Oct 26
1
GLMMPQL and negbinomial: trouble with the X-axis in PREDICT
...mily=negative.binomial(theta))
> summary(m1)
Linear mixed-effects model fit by maximum likelihood
Data: a
AIC BIC logLik
NA NA NA
Random effects:
Formula: ~1 | BUSHID
(Intercept) Residual
StdDev: 1.081722 0.6577578
Variance function:
Structure: fixed weights
Formula: ~invwt
Fixed effects: MANUAL ~ BERRIES
Value Std.Error DF t-value p-value
(Intercept) 7.602133 0.23105575 91 32.90172 0
BERRIES 0.001369 0.00023395 28 5.85324 0
Correlation:
(Intr)
BERRIES -0.485
Standardized Within-Group Residuals:
Min Q1...
2005 Aug 18
1
GLMM - Am I trying the impossible?
...1.glmmpql)
Linear mixed-effects model fit by maximum likelihood
Data: fish.data
AIC BIC logLik
1236.652 1255.103 -612.326
Random effects:
Formula: ~1 | Tank
(Intercept) Residual
StdDev: 0.02001341 0.8944214
Variance function:
Structure: fixed weights
Formula: ~invwt
Fixed effects: dead ~ Parasite * Bacteria
Value Std.Error DF t-value p-value
(Intercept) -18.56607 1044.451 150 -0.01777591 0.9858
Parasiteyes 15.85802 1044.451 6 0.01518311 0.9884
Bacteriayes 17.23107 1044.451 6 0.0...
2004 Nov 09
1
Some questions to GLMM
...: General positive-definite, Log-Cholesky parametrization
StdDev Corr
(Intercept) 0.27914612 (Intr) thick
thick 0.03089333 -0.251
I(thick^2) 0.01867846 -0.878 -0.067
Residual 1.37952490
Variance function:
Structure: fixed weights
Formula: ~invwt
Fixed effects: lixt ~ thick + I(thick^2)
Value Std.Error DF t-value p-value
(Intercept) -4.038800 0.4834792 446 -8.353617 0
thick 2.371842 0.2642474 446 8.975837 0
I(thick^2) -0.279189 0.0337451 446 -8.273479 0
Correlation:
(Intr) thick...
2002 Jun 21
0
Interpreting output from glmmPQL
...AIC BIC logLik
4427.735 4447.531 -2209.868
Random effects:
Formula: ~1 | groupid
(Intercept)
StdDev: 0.3312237
Formula: ~1 | participantid %in% groupid
(Intercept) Residual
StdDev: 0.3651775 0.9765288
Variance function:
Structure: fixed weights
Formula: ~invwt
Fixed effects: r.logic.morality ~ 1
Value Std.Error DF t-value p-value
(Intercept) -0.1699931 0.1039887 905 -1.634727 0.1025
Standardized Within-Group Residuals:
Min Q1 Med Q3 Max
-1.2951648 -0.8865510 -0.7183326 1.0428044 1.6135857...
2007 Feb 10
2
error using user-defined link function with mixed models (LMER)
...4)
iteration 1
> summary(apfa.glmm.1)
Linear mixed-effects model fit by maximum likelihood
Data: apfa4
AIC BIC logLik
NA NA NA
Random effects:
Formula: ~1 | Territory
(Intercept) Residual
StdDev: 0.0003431913 1.051947
Variance function:
Structure: fixed weights
Formula: ~invwt
Fixed effects: Success ~ MeanAge + I(MeanAge^2)
Value Std.Error DF t-value p-value
(Intercept) 5.559466 0.6416221 624 8.664705 0.0000
MeanAge -0.090824 0.0429346 624 -2.115397 0.0348
I(MeanAge^2) 0.001493 0.0006436 624 2.319090 0.0207
Correlation:
(Int...