Displaying 4 results from an estimated 4 matches for "i_a".
Did you mean:
_a
2013 Mar 02
3
if value is in vector, perform this function
...ng sequence - every "3.5 days"
feed_days = seq(1,60,by=3.5)
Daphnia <- function(t,x,params){
C_D = x[2];
C_A = 0;
for(t %in% feed_days){
if t == TRUE {
C_A = 1.5
}
else{
C_A = 0
}}
gamma = params[1]; m_D = params[2]; K_q = params[3]; q_max = params[4];
M_D = m_D * C_D
I_A = (C_D * q_max * C_A) / (K_q + C_A)
r_D = gamma * I_A
return(
list(c(
- I_A,
r_D - M_D
)))
}
library(deSolve)
results <- ode(init, t, Daphnia, params, method = "lsoda")
Let me know if there's any other info that would be helpful and thanks very much for your help!
[[a...
2009 Nov 22
1
How to make a matrix of a number of factors?
I use the following code to generate a matrix of factors. I'm
wondering if there is a way to make it more general so that I can have
any number of factors (not necessarily 5).
a=3
b=4
c=5
d=6
e=7
A=1:a
B=1:b
C=1:c
D=1:d
E=1:e
X=matrix(nr=a*b*c*d*e,nc=5)
for(i_a in 1:a-1) {
for(i_b in 1:b-1) {
for(i_c in 1:c-1) {
for(i_d in 1:d-1) {
for(i_e in 1:e-1) {
X[(((i_a * b + i_b) * c + i_c) * d + i_d) * e + i_e + 1, ] =
c(i_a+1, i_b+1, i_c+1, i_d+1, i_e+1)
}
}
}
}
}
print(X)
2010 Feb 09
1
"1 observation deleted due to missingness" from summary() on the result of aov()
...24 19.849 0.82705 0.9589 0.52442
Residuals 119 102.642 0.86254
---
Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1
1 observation deleted due to missingness
#######################
a=3
b=4
c=5
A=1:a
B=1:b
C=1:c
n=3
X=matrix(nr=a*b*c*n,nc=n)
colnames(X)=LETTERS[1:n]
for(i_a in 1:a-1) {
for(i_b in 1:b-1) {
for(i_c in 1:c-1) {
for(i_n in 1:n-1) {
X[((i_a * b + i_b) * c + i_c) * n + i_n + 1, ] = c(i_a+1, i_b+1, i_c+1)
}
}
}
}
set.seed(0)
Y=matrix(nr=a*b*c*n,nc=1)
for(i in 1:(a*b*c)) {
for(i_n in 1:n-1) {
fa=X[i,'A']
fb=X...
2009 Nov 22
1
Why F value and Pr are not show in summary() of an aov() result?
...ave the following code. I'm wondering why summary() doesn't show F
value and Pr?
Rscript multi_factor.R
> a=3
> b=4
> c=5
> d=6
> e=7
>
> A=1:a
> B=1:b
> C=1:c
> D=1:d
> E=1:e
>
> X=matrix(nr=a*b*c*d*e,nc=5)
> colnames(X)=LETTERS[1:5]
>
> for(i_a in 1:a-1) {
+ for(i_b in 1:b-1) {
+ for(i_c in 1:c-1) {
+ for(i_d in 1:d-1) {
+ for(i_e in 1:e-1) {
+ X[(((i_a * b + i_b) * c + i_c) * d + i_d) * e + i_e + 1, ]
= c(i_a+1, i_b+1, i_c+1, i_d+1, i_e+1)
+ }
+ }
+ }
+ }
+ }
>
> Y=matrix(nr=a*b*c*d...