search for: fscore

Displaying 9 results from an estimated 9 matches for "fscore".

Did you mean: score
2017 Oct 09
1
Help RFM analysis in R (i want a code where i can define my own breaks instead of system defined breaks used in auto_RFM package)
...sh<-as.Date(date(), "%a %b %d %H:%M:%S %Y") x$rscore<-as.numeric(finish-as.Date(x[,3],date.format)) x$rscore<-as.numeric(cut(x$rscore,breaks=rbreaks,labels=FALSE)) custIDs<-unique(x[,1]) ncust<-length(custIDs) rfmout<-data.frame(custID=custIDs,rscore=rep(0,ncust), fscore=rep(0,ncust),mscore=rep(0,ncust)) rfmout$rscore<-cut(by(x$rscore,x[,1],min),breaks=rbreaks,labels=FALSE) rfmout$fscore<-cut(table(x[,1]),breaks=fbreaks,labels=FALSE) rfmout$mscore<-cut(by(x[,2],x[,1],sum),breaks=mbreaks,labels=FALSE) rfmout$cscore<-(weights[1]*rfmout$rscore+ weigh...
2017 Oct 09
2
Help RFM analysis in R (i want a code where i can define my own breaks instead of system defined breaks used in auto_RFM package)
...;) >> x$rscore<-as.numeric(finish-as.Date(x[,3],date.format)) >> x$rscore<-as.numeric(cut(x$rscore,breaks=rbreaks,labels=FALSE)) >> custIDs<-unique(x[,1]) >> ncust<-length(custIDs) >> rfmout<-data.frame(custID=custIDs,rscore=rep(0,ncust), >> fscore=rep(0,ncust),mscore=rep(0,ncust)) >> rfmout$rscore<-cut(by(x$rscore,x[,1],min),breaks=rbreaks,labels=FALSE) >> rfmout$fscore<-cut(table(x[,1]),breaks=fbreaks,labels=FALSE) >> rfmout$mscore<-cut(by(x[,2],x[,1],sum),breaks=mbreaks,labels=FALSE) >> rfmout$cscore&lt...
2017 Oct 09
0
Help RFM analysis in R (i want a code where i can define my own breaks instead of system defined breaks used in auto_RFM package)
...a %b %d %H:%M:%S %Y") > x$rscore<-as.numeric(finish-as.Date(x[,3],date.format)) > x$rscore<-as.numeric(cut(x$rscore,breaks=rbreaks,labels=FALSE)) > custIDs<-unique(x[,1]) > ncust<-length(custIDs) > rfmout<-data.frame(custID=custIDs,rscore=rep(0,ncust), > fscore=rep(0,ncust),mscore=rep(0,ncust)) > rfmout$rscore<-cut(by(x$rscore,x[,1],min),breaks=rbreaks,labels=FALSE) > rfmout$fscore<-cut(table(x[,1]),breaks=fbreaks,labels=FALSE) > rfmout$mscore<-cut(by(x[,2],x[,1],sum),breaks=mbreaks,labels=FALSE) > rfmout$cscore<-(weights[1]*rf...
2017 Oct 10
0
Help RFM analysis in R (i want a code where i can define my own breaks instead of system defined breaks used in auto_RFM package)
...-as.numeric(finish-as.Date(x[,3],date.format)) > >> x$rscore<-as.numeric(cut(x$rscore,breaks=rbreaks,labels=FALSE)) > >> custIDs<-unique(x[,1]) > >> ncust<-length(custIDs) > >> rfmout<-data.frame(custID=custIDs,rscore=rep(0,ncust), > >> fscore=rep(0,ncust),mscore=rep(0,ncust)) > >> rfmout$rscore<-cut(by(x$rscore,x[,1],min),breaks=rbreaks,labels=FALSE) > >> rfmout$fscore<-cut(table(x[,1]),breaks=fbreaks,labels=FALSE) > >> rfmout$mscore<-cut(by(x[,2],x[,1],sum),breaks=mbreaks,labels=FALSE) > >&g...
2013 Mar 18
1
"save scores" from sem
I'm not aware of any routine that those the job, although I think that it could be relatively easily done by multiplication the manifest variable vector with the estimates for the specific effect. To make an example: v1; v2; v3; v4 are manifest variables that loads on one y latent variablein a data frame called "A" the code for the model should be like: model <-specifymodel( y
2017 Oct 06
3
Help RFM analysis in R (i want a code where i can define my own breaks instead of system defined breaks used in auto_RFM package)
I'm trying to perform an RFM analysis on the attached dataset, I'm able to get the results using the auto_rfm function but i want to define my own breaks for RFM. as follow r <-c(30,60,90) f <-c(2,5,8) m <-c(10,20,30) but when i tried to define my own breaks i got the identical result for RFM i.e 111 for every ID. please help me with this with working R script so that i can get
2003 May 01
0
factanal
...-0.417 -0.620 -0.519 0.694 0.648 # 1.460 1.038 0.532 1.261 -0.364 0.848 # -0.639 0.888 0.306 -0.372 -0.305 1.101 # 0.779 1.595 0.775 0.499 1.215 -1.055 # 1.304 0.702 0.844 0.688 0.992 0.488 # ; # # proc factor data=x corr method=ml nfactors=2 prerotate=varimax rotate=promax out=fscores score; # run; # # proc print data=fscores; # var factor1 factor2; # run; # # The factor scores one obtains: # Obs Factor1 Factor2 # 1 -1.00830 -2.12208 # 2 -1.76352 0.09283 # 3 -0.23031 0.96792 # 4 0.06982 -0.01378 # 5 -0.24...
2017 Oct 11
0
RFM analysis
...se freqency",range(table(x[,1])),"\n") cat("Range of purchase amount",range(by(x[,2],x[,1],sum)),"\n") custIDs<-unique(x[,1]) ncust<-length(custIDs) # initialize a data frame to hold the output rfmout<-data.frame(custID=custIDs,rscore=rep(0,ncust), fscore=rep(0,ncust),mscore=rep(0,ncust)) # categorize the minimum number of days # since last purchase for each customer rfmout$rscore<-cut(by(x$rscore,x[,1],min),breaks=rbreaks,labels=FALSE) # categorize the number of purchases # recorded for each customer rfmout$fscore<-cut(table(x[,1]),brea...
2000 Mar 07
1
update fails after specific sequence of steps (PR#474)
...fcategory) Coefficients: (Intercept) statuslow fcategorylow fcategorymedium 14.72356 -4.60667 0.08089 -1.09511 ------------------------ listing of dataset ---------------------------------------- > Moore subject status conform fcategory fscore 1 1 low 8 low 37 2 2 low 4 high 57 3 3 low 8 high 65 4 4 low 7 low 20 5 5 low 10 low 36 6 6 low 6 low 18 7 7 low 12 medium 5...