Displaying 4 results from an estimated 4 matches for "fitgpd".
2007 Jun 19
2
Function -return value
...atrix
with element like "Numeric,2" ... I guess they are just the values for
"parab", and we can not even see the two parameters in parab.
parameter <- function(v) {
v1 <- v[v>mean(v)+0.5*sd(v)]
v2 <- v[v<mean(v)-0.5*sd(v)]
alpha=min(v1)
beta=max(v2)
para <- fitgpd(v1,alpha, method="pwmu")$param
parab <- fitgpd((-v2), (-beta), method="pwmu")$param
v1.fit <- qgpd(ppoints(v1, a=0.5), alpha, para[1], para[2])
v2.fit <- qgpd(ppoints((-v2), a=0.5), (-beta), para[1], para[2])
alpha
beta
para
parab
}
tapply(variable, list(a, b),param...
2012 Jun 01
1
POT Package
Hi,
I have a problem in fitting GPD distribution.
i generate random numbers from gpd distribution from specific parameters
using pot packege then i used fitgpd function to estimete the parameters.The
estimated parameters are not matched with the given parameters i.e.from
which i generate random numbers.I think estimated parameters should be
matched with the given parameters.Also suggest me another good packege for
GPD.
for e.g.
k2<-rgpd(100,loc=10000...
2005 Oct 07
1
Troubleshooting with "gpd" (Fit generalized pareto model)
Up to now, I have recognized problems with "gpd(..)", the function from
the package "evir"
I think that all these functions that estimate the parameters xi, beta for
the GPD
by given threshold mu use the function "optim(..)" ( gpd, fitgpd, ...)
"Error" example:
data1 <- rgpd(1000, xi= -1.5, mu=1000, beta=100)
so the created poinnts take place in about (1000, 1070).
Now I want to estimate xi and beta by given threshold =1060,
out <- gpd(data1, threshold=1060) and this causes an error in
"optim".
My...
2007 Jun 13
2
Fitted Value Pareto Distribution
I would like to fit a Pareto Distribution and I am using the following codes.
I thought the fitted (fit1) should be the fitted value for the data, is it
correct? As the result of the "fitted" turns out to be a single value for
all.
fit=vglm(ycf1 ~ 1, pareto1(location=alpha), trace=TRUE, crit="c")
fitted(fit)
The result is
fitted(fit)
[,1]
[1,] 0.07752694