search for: fitc

Displaying 8 results from an estimated 8 matches for "fitc".

Did you mean: fit
2007 Jul 26
2
logistic regression
...#39;t accept assignment of "fi1c==j" and it won't calculate the sum. I am wondering whether someone might be able to offer me some assistance...my search of the archives was not fruitful. Here is the code that I adapted from the lecture notes: fit <- fitted(glm.lyme) fitc <- cut(fit, br = c(0, quantile(fit, p = seq(.1, .9, .1)),1)) t<-table(fitc) fitc <- cut(fit, br = c(0, quantile(fit, p = seq(.1, .9, .1)), 1), labels = F) t<-table(fitc) #Calculate observed and expected values in ea group E <- matrix(0, nrow=10, ncol = 2) O <- matrix(0,...
2009 Sep 07
1
Omnibus test for main effects in the face of an interaction containing the main effects.
...lieve I can get the omnibus test for the interaction by running the model: fitb<-lme(Post~Time+factor(Group), random=~1|SS,data=blah$alldata) followed by anova(fita,fitb). How do I get the omnibus test for the main effects i.e. for Time and factor(Group)? I could drop each from the model, i.e. fitc<-lme(Post~ factor(Group)+factor(Group)*Time, random=~1|SS,data=blah$alldata) fitd<-lme(Post~Time+ factor(Group)*Time, random=~1|SS,data=blah$alldata) and then run anova(fita,fitc) anova(fita,fitd) but I don't like this option as it will have in interactio...
2011 Oct 01
1
Problem with logarithmic nonlinear model using nls() from the `stats' package
Example: > f <- function(x) { 1 + 2 * log(1 + 3 * x) + rnorm(1, sd = 0.5) } > y <- f(x <- c(1 : 10)); y [1] 4.503841 5.623073 6.336423 6.861151 7.276430 7.620131 7.913338 8.169004 [9] 8.395662 8.599227 > nls(x ~ a + b * log(1 + c * x), start = list(a = 1, b = 2, c = 3), trace = TRUE) 37.22954 : 1 2 3 Error in numericDeriv(form[[3L]], names(ind), env) : Missing value or an
2003 Dec 16
0
Help w/ termplot & predict.coxph/ns
...lot(model.fit) lines(newdata[,2], newpred) Interestingly enough, predict(model.fit) does give back the correct values for the actual data set used in the fitting: max(predict(model.fit)-model.fit$linear.predictors)=0. Am I missing something here? 3. Using the fitted coeficients: # Coefficients fitc<-coef(model.fit) # Predictors basis <- ns(x2, df = 3) ; # df= 3 were used to fit the model newx2<- seq(0,30,length=60) # new data in the coords of the basis and x1=1 for all obs newdata2<-cbind(rep(1,60),predict(basis, newx2)) newpred<-newdata2%*%fitc termplot(model.fit, ylim=c(0...
2009 Sep 08
3
Omnibus test for main effects in the face ofaninteraction containing the main effects.
...lieve I can get the omnibus test for the interaction by running the model: fitb<-lme(Post~Time+factor(Group), random=~1|SS,data=blah$alldata) followed by anova(fita,fitb). How do I get the omnibus test for the main effects i.e. for Time and factor(Group)? I could drop each from the model, i.e. fitc<-lme(Post~ factor(Group)+factor(Group)*Time, random=~1|SS,data=blah$alldata) fitd<-lme(Post~Time+ factor(Group)*Time, random=~1|SS,data=blah$alldata) and then run anova(fita,fitc) anova(fita,fitd) but I don't like this option as it will have in interaction...
2004 Dec 13
1
AIC, glm, lognormal distribution
I'm attempting to do model selection with AIC, using a glm and a lognormal distribution, but: fit1<-glm(BA~Year,data=pdat.sp1.65.04, family=gaussian(link="log")) ## gives the same result as either of the following: fit1<-glm(BA~Year,data=pdat.sp1.65.04, family=gaussian) fit1<-lm(BA~Year,data=pdat.sp1.65.04) fit1 #Coefficients: #(Intercept) Year2004 # -1.6341
2013 Mar 14
1
error: object of type 'closure' is not subsettable
...inge-hoch #5: Ringe-niedrig #6: Ringe-mittel #7: Fitness-hoch #8: Fitness-niedrig # dye #A: Hoechst42 #B: Hoechst80 #C: Vio #D: Vibrant Orange gating 1 #E: Vibrant Orange gating 2 #F: NID APC #G: NID PerCP #H: DraQ #I: Syber Green 1000 #J: Syber Green 2000 #K: Syber Green 5000 #L: Acridin Orange FITC #M: Acridin Orange PerCP #Standart Hoch & Hoechst42, Hoechst80, Vio, NID APC, NID PerCP, Syber Green 5000, Acridin Orange FITC, Acridin Orange PerCP aa=mytable[mytable[,"con"]==1& mytable[,"dye"]=="A","differenz"] ab=mytable[mytable[,"c...
2009 Mar 15
0
Axes crossing at origin
...tion.png",width=18,height=18,units="cm",res=600,pointsize=16) newdata=data.frame(x=seq(0,0.6*max(fit$df$x),length=200)) newy=predict(fit,newdata) plot.new() plot.window(xlim=c(0,0.6*max(fit$df$x)),ylim=c(15.7,17.5)) lines(newdata$x, newy) axis(1) axis(2) abline(v=0, h=0) mtext("FITC-insulin [mol]",1,2.4) mtext("log intensity [log(LAU)]",2,2.4) myydata=c(16.35,16.5,16.65,16.95,17.1,17.25) source("predict_amount.r") myxdata=predict_amount(fit,myydata,uselog=TRUE) for(i in 1:length(myydata)){ lines(c(myxdata[i],myxdata[i],max(newdata)),c(min(newy),myydat...