search for: fit3

Displaying 20 results from an estimated 75 matches for "fit3".

Did you mean: fit
2013 Apr 09
2
R crash
...;- REL library(pseudo) pseudo <- pseudoci(time=a$TIME,event=a$icr,tmax=cutoffs) #rearranging data b <- NULL for(it in 1:length(pseudo$time)){ b <- rbind(b,cbind(a,pseudo = pseudo$pseudo[[1]][,it], tpseudo = pseudo$time[it],id=1:nrow(a))) } b <- b[order(b$id),] library(geepack) fit3 <- geese(pseudo ~ as.factor(AGE) + as.factor(WEIGHT) + as.factor(HEIGHT) , data =b, id=id, jack = TRUE, scale.fix=TRUE, mean.link = "logit", corstr="unstructured") #The results using the AJ variance estimate cbind(mean = round(fit3$beta,4), SD = round(sqrt(diag(fit3$vbeta.a...
2009 Mar 26
0
(Interpretation) VGAM - FRECHET 3 parameters by maximum likelihood estimation for
Dear R Helpers This is the R code (which I have slightly changed) I got in VGAM package for estimating the parameters of FRECHET. _________________________________________________________________ y = rfrechet(n <- 100, shape=exp(exp(0))) # (A) fit3 = vglm(y ~ 1, frechet3(ilocation=0), trace=TRUE, maxit=155) # (B) coef(fit3, matrix=TRUE) # (C) Coef(fit3) # (D) fitted(fit3)[1:5,] # (E) mean(y)...
2009 Jul 28
2
A hiccup when using anova on gam() fits.
I stumbled across a mild glitch when trying to compare the result of gam() fitting with the result of lm() fitting. The following code demonstrates the problem: library(gam) x <- rep(1:10,10) set.seed(42) y <- rnorm(100) fit1 <- lm(y~x) fit2 <- gam(y~lo(x)) fit3 <- lm(y~factor(x)) print(anova(fit1,fit2)) # No worries. print(anova(fit1,fit3)) # Likewise. print(anova(fit2,fit3)) # Throws an error. print(anova(fit3,fit2)) # ``Works'' but gives negative degrees of freedom and sum of squares. Is this evidence of a ``bug''? Or am I being t...
2009 May 12
1
questions on rpart (tree changes when rearrange the order of covariates?!)
...ot;CART for original data") text(fit2,use.n=T,cex=0.6) printcp(fit2) table(predict(fit2,type="class"),mydata$diabetes) ## misclassifcation table: rows are fitted class neg pos neg 437 68 pos 63 200 #Klimt(fit2,mydata) pmydata<-data.frame(mydata[,c(1,6,3,4,5,2,7,8,9)]) fit3<-rpart(diabetes~., data=pmydata,method="class") plot(fit3,uniform=T,main="CART after exchaging mass & glucose") text(fit3,use.n=T,cex=0.6) printcp(fit3) table(predict(fit3,type="class"),pmydata$diabetes) ##after exchage the order of BODY mass and PLASMA glucose...
2012 Nov 08
2
Comparing nonlinear, non-nested models
...ym, k) ym * (x-xo)/(k+x-xo) model3 <- function(x, xo, ym) ym * (1-exp(-log(2)*(x-xo)/xo)) model4 <- function(x, xo, ym, k) ym * (1-exp(-log(2)*(x-xo)/k)) fit1 <- nls(y~model1(x, xo, ym), start=list(xo=0.5, ym=1)) fit2 <- nls(y~model2(x, xo, ym, k), start=list(xo=0.5, ym=1, k=1)) fit3 <- nls(y~model3(x, xo, ym), start=list(xo=0.5, ym=1)) fit4 <- nls(y~model4(x, xo, ym, k), start=list(xo=0.5, ym=1, k=1)) anova(fit1, fit2) anova(fit3, fit4) Models 1 and 2 are nested, as are models 3 and 4 (set k=xo), so they can be compared using anova. I am looking for a way to compare...
2005 Apr 23
1
question about about the drop1
...ot;Yes","No"),levels=c("No","Yes")), cigarette=factor(c("Yes","No"),levels=c("No","Yes")), alcohol=factor(c("Yes","No"),levels=c("No","Yes"))), count=c(911,538,44,456,3,43,2,279)) >fit3<-glm(count~.^3,poisson,table.8.3) >sumary(fit3) ... Residual deviance: -1.5543e-15 on 0 degrees of freedom AIC: 65.043 > drop1(fit3,.~.,test="Chisq") Single term deletions Model: count ~ (marijuana + cigarette + alcohol)^3 Df Deviance AIC L...
2009 May 22
1
bug in rpart?
...,uniform=T,main="CART for original data") text(fit2,use.n=T,cex=0.6) printcp(fit2) table(predict(fit2,type="class"),mydata$diabetes) ## misclassifcation table: rows are fitted class neg pos neg 437 68 pos 63 200 pmydata<-data.frame(mydata[,c(1,6,3,4,5,2,7,8,9)]) fit3<-rpart(diabetes~., data=pmydata,method="class") plot(fit3,uniform=T,main="CART after exchaging mass & glucose") text(fit3,use.n=T,cex=0.6) printcp(fit3) table(predict(fit3,type="class"),pmydata$diabetes) ##after exchage the order of BODY mass and PLASMA glucose...
2011 Sep 12
1
coxreg vs coxph: time-dependent treatment
...e-weights fit1 <- coxreg(Surv(start,stop,event)~transplant, data=heart) fit1 # fit with coxreg from eha without case-weights # coxph fit2 <- coxph(Surv(start,stop,event)~transplant + cluster(id), data=heart, weights = iptw, robust = T) fit2 # fit with coxph having robust and cluster option fit3 <- coxph(Surv(start,stop,event)~transplant + cluster(id), data=heart, weights = iptw) fit3 # fit with coxph having cluster option fit4 <- coxph(Surv(start,stop,event)~transplant, data=heart, weights = iptw) fit4 # fit with coxph # coxreg fit5 <- coxreg(Surv(start,stop,event)~transplan...
2004 Dec 20
2
problems with limma
...M t P.Value B 88 1426.738 80.48058 5.839462e-05 -4.510845 1964 36774.167 73.05580 5.839462e-05 -4.510861 5854 7422.578 68.60316 5.839462e-05 -4.510874 11890 1975.316 66.54480 5.839462e-05 -4.510880 9088 2696.952 64.16343 5.839462e-05 -4.510889 > # > fit3 <- lmFit(bas,design) > fit3 <- eBayes(fit3) > topTable(fit3,adjust="fdr",number=5) M t P.Value B 6262 1415.088 100.78933 2.109822e-05 -4.521016 5660 1913.479 96.40903 2.109822e-05 -4.521020 11900 4458.489 94.30738 2.109822e-05 -4.521022...
2018 Jan 17
1
Assessing calibration of Cox model with time-dependent coefficients
...uot;expected")) lp <- predict(fit0, newdata = data1, type = "lp") logbase <- p - lp fit1 <- glm(y ~ offset(p), family = poisson, data = data1) fit2 <- glm(y ~ lp + offset(logbase), family = poisson, data = data1) group <- cut(lp, c(-Inf, quantile(lp, (1:9) / 10), Inf)) fit3 <- glm(y ~ -1 + group + offset(p), family = poisson, data = data1) Here?I simplely use data1 <- data0[1:500,] First, I get following error when running line 5. Error in eval(predvars, data, env) : object 'y' not found So I modifited the code by replacing the y as status looks like...
2005 Jun 15
1
anova.lme error
...6) ) ## This leads to the following error: ## Error in anova.lme(object = fit1, fit2) : Object "fit2" not found results <- myFunction(myDataFrame=df) ##################################################### ## The same thing outside of a function # Less restricted fit3 <- gls(y ~ dose, weights=varIdent(form=~1|dose), data=df) # more restricted fit4 <- gls(y ~ dose, data=df) ## This works: anova(fit3, fit4) ## The results: ## > anova(fit3, fit4) ## Model df AIC BIC logLik Test L.Ratio p-value...
2010 Jul 31
2
Is profile.mle flexible enough?
...n(mu) { logsigma2 <- 0; N*log(2*pi*exp(logsigma2))/2 + N*(var(x)+(mean(x)-mu)^2)/(2*exp(logsigma2)) } N <- 100 x <- rnorm(N, 0, 1) fit <- mle(minusLogL1, start=list(mu=0, logsigma2=0)) confint(fit) fit2 <- mle(minusLogL1, start=list(mu=0), fixed=list(logsigma2=0)) confint(fit2) fit3 <- mle(minusLogL2, start=list(mu=0)) confint(fit3) ----------->8-------------------------------- Is it unreasonable to expect an identical result with fit2 and fit3? When looking into the code of the "profile" method for mle, one can find something like call$fixed <- fix ; i.e...
2008 Jan 05
1
Likelihood ratio test for proportional odds logistic regression
...ull polr model (refer to example below)? So in the case of the example below, the p-value would be 1. 2. For the model in which there is only one independent variable, I would expect the Wald test and the likelihood ratio test to give similar p-values. However the p-values obtained from anova(fit1,fit3) (refer to example below) are very different (0.0002622986 vs. 1). Why is this so? > library(MASS) > fit1 <- polr(housing$Sat~1) > fit2<- polr(housing$Sat~housing$Infl) > fit3<- polr(housing$Sat~housing$Cont) > summary(fit1) Re-fitting to get Hessian Call: polr(formula =...
2008 Apr 17
1
survreg() with frailty
...or Windows library(survival) # version 2.34-1 (2008-03-31) # discrepancy fit1 <- survreg(Surv(time, status) ~ rx + frailty(litter), rats) fit1 fit1$history[[1]]$theta # OK fit2 <- survreg(Surv(time, status) ~ rx + frailty(litter, df = 13), rats) fit2 fit2$history[[1]]$theta # discrepancy fit3 <- survreg(Surv(time, status)~ age + sex + frailty(id), kidney) fit3 fit3$history[[1]]$theta # OK fit4 <- survreg(Surv(time, status)~ age + frailty(id), kidney) fit4 fit4$history[[1]]$theta Am I missing something? Thanks in advance for any pointers! Best, Dimitris ---- Dimitris Rizopoulo...
2010 Feb 26
2
Error in mvpart example
Dear all, I'm getting an error in one of the stock examples in the 'mvpart' package. I tried: require(mvpart) data(spider) fit3 <- rpart(gdist(spider[,1:12],meth="bray",full=TRUE,sq=TRUE)~water+twigs+reft+herbs+moss+sand,spider,method="dist") #directly from ?rpart summary(fit3) ...which returned the following: Error in apply(formatg(yval, digits - 3), 1, paste, collapse = ",", sep = "...
2009 Apr 24
2
prediction intervals (alpha and beta) for model average estimates from binomial glm and model.avg (library=dRedging)
...(y~á+âx). The model average estimates are from the dRedging library? It seems a common thing but I can't seem to find one via the search engines Examples of the models are: fit1 <- glm(y~ dbh, family = binomial, data = data) fit2 <- glm(y~ dbh+vegperc, family = binomial, data = data) fit3 <- glm(y~ dbh, family = binomial, data = data) and the model averaging model.averaging <-model.avg(fit1,fit2,fit3, method="0") and the output (from model.avg) has the following items: Coefficient, Variance, Standard error, adjusted standard error and lower and upper confidence i...
2009 Apr 28
1
How to read the summary
How can I from the summary function, decide which glm (fit1, fit2 or fit3) fits to data best? I don't know what to look after, so I would please explain the important output. > fit1 <- glm(Y~X, family=gaussian(link="identity")) > fit2 <- glm(Y~X, family=gaussian(link="log")) > fit3 <- glm(Y~X, family=Gamma(link="log"))...
2011 Jan 05
1
Comparing fitting models
...not. From the R prompt I am not able to see where I can get this information. Let´s do an example: fit1<- lm(response ~ stimulus + condition + stimulus:condition, data=scrd) #EQUIVALE A lm(response ~ stimulus*condition, data=scrd) fit2<- lm(response ~ stimulus + condition, data=scrd) fit3<- lm(response ~ condition, data=scrd) > anova(fit2, fit1) #compare models Analysis of Variance Table Model 1: response ~ stimulus + condition Model 2: response ~ stimulus + condition + stimulus:condition Res.Df RSS Df Sum of Sq F Pr(>F) 1 165 364.13...
2005 Aug 29
1
Different sings for correlations in OLS and TSA
...uld be consistent with following processes: fun.tsa.mle(ts.mar) #following DAAG a p=2 AR fun.tsa.mle(ts.anr) #following DAAG a p=2 AR #I need to know, wether ts.anr can be explained with ts.mar, so #according to ar.mle: mod3<-arima(ts.anr,order=c(2,0,0),xreg=ts.mar,transform.pars=TRUE) fit3 <- gls(ts.anr ~ ts.mar,correlation = corARMA(value=c(mod3$coef[1],mod3$coef[2]),p=2)) summary(fit3) ts.plot(ts.anr,fit3$fitted,col=1:2) #the puzzling bit is the negative correlation. It ought to be positive, I think. #a simple OLS (this is what the people before me have done) yields test3<-...
2018 Jan 18
1
Time-dependent coefficients in a Cox model with categorical variants
...<- predict(fit0, newdata = data1, type = "lp") 4. logbase <- p - lp 5. fit1 <- glm(status ~ offset(p), family = poisson, data = data1) 6. fit2 <- glm(status~ lp + offset(logbase), family = poisson, data = data1) 7. group <- cut(lp, c(-Inf, quantile(lp, (1:9) / 10), Inf)) 8. fit3 <- glm(status ~ -1 + group + offset(p), family = poisson, data = data1) The key idea of the paper you referenced is that the counterpart to the Hosmer-Lemishow test (wrong if used directly in a Cox model) is to look at the predicted values from a Cox model as input to a Poisson regression. Tha...