Displaying 12 results from an estimated 12 matches for "b'b".
Did you mean:
b&b
2005 Jun 03
2
using so-library involving Taucs
Dear R developers,
The trace of the hat matrix H~(n,n) is computed as follows:
tr(H) = tr(BS^-1B') = tr(S^-1B'B) := tr(X) = sum(diag(X))
with B~(n,p), S~(p,p).
Since p is of the order 10^3 but S is sparse I would like to employ
Taucs linear solver ( http://www.tau.ac.il/~stoledo/taucs/ ) on
SX = B'B.
(Further improvement by implying a looping over i=1,...,p, calling
tauc...
2006 Aug 09
1
minimization a quadratic form with some coef fixed and some constrained
Hello, all,
I had problems with an extension to a classic optimization problem.
The target is to minimize a quadratic form a'Ma with respect to vector
b, where vector a=(b',-1)', i.e., a is the expand of b, and M is a
symmetric matrix (positive definite if needed). One more constrain on b
is b'b=1. I wan...
2006 Mar 20
1
help on regression
Dear R-users,
I would like to know if there is any way to minimize || y - Xb||^2 under the
constraint b'b=1.
Thank you
Giancarlo
2014 Aug 10
2
New Python API? (was: Re: About the return value of value_value)
(renaming subject as I am partially getting off-topic)
On Sunday 10 August 2014 16:26:07 Richard W.M. Jones wrote:
> > The next issue I see now is about the value_value function. This is
> > briefly documented as: "return data length, data type and data of a
> > value".
> >
&...
2009 Nov 25
1
R: Re: R: Re: chol( neg.def.matrix ) WAS: Re: Choleski and Choleski with pivoting of matrix fails
Dear Peter,
thank you very much for your answer.
My problem is that I need to calculate the following quantity:
solve(chol(A)%*%Y)
Y is a 3*3 diagonal matrix and A is a 3*3 matrix. Unfortunately one
eigenvalue of A is negative. I can anyway take the square root of A but when I
multiply it by Y, the imaginary part of the square root of A is dropped, a...
2007 Jan 24
1
Matrix question: obtaining the square root of a positive definite matrix?
I want to compute B=A^{1/2} such that B*B=A.
For example
a=matrix(c(1,.2,.2,.2,1,.2,.2,.2,1),ncol=3)
so
> a
[,1] [,2] [,3]
[1,] 1.0 0.2 0.2
[2,] 0.2 1.0 0.2
[3,] 0.2 0.2 1.0
> a%*%a
[,1] [,2] [,3]
[1,] 1.08 0.44 0.44
[2,] 0.44 1.08 0.44
[3,] 0.44 0.44 1.08
> b=a%*%a
i have tried to use...
2012 Jul 31
1
about changing order of Choleski factorization and inverse operation of a matrix
Dear All,
My question is simple but I need someone to help me out.
Suppose I have a positive definite matrix A.
The funtion chol() gives matrix L, such that A = L'L.
The inverse of A, say A.inv, is also positive definite and can be
factorized as A.inv = M'M.
Then
A = inverse of (A.inv) = inverse of (M'M) = (in...
2009 Nov 23
1
R: Re: chol( neg.def.matrix ) WAS: Re: Choleski and Choleski with pivoting of matrix fails
It works! But Once I have the square root of this matrix, how do I convert it
to a real (not imaginary) matrix which has the same property? Is that
possible?
Best,
Simon
>----Messaggio originale----
>Da: p.dalgaard at biostat.ku.dk
>Data: 21-nov-2009 18.56
>A: "Charles C. Berry"<cb...
2009 Nov 26
0
R: RE: R: Re: R: Re: chol( neg.def.matrix ) WAS: Re: Choleski and Choleski with pivoting of matrix fails
Thanks for your message!
Actually it works quite well for me too.
If I then take the trace of the final result below, I end up with a number
made up of both a real and an imaginary part. This does not probably mean much
if the trace of the matrix below givens me info about the degrees of freedom of
a model...
Simona
>----Messaggio originale----
>Da: RVaradhan at jhmi.edu
>Data: 25-nov-2009 18.5...
2014 Aug 10
2
About the return value of value_value
Hi,
I have been working on a Python application that uses hivex. Meanwhile I have
encountered some Python bindings issues which could be fixed.
The next issue I see now is about the value_value function. This is briefly
documented as: "return data length, data type and data of a value".
For Perl,...
2008 Jun 18
2
highest eigenvalues of a matrix
DeaR list,
I happily use eigen() to compute the eigenvalues and eigenvectors of
a fairly large matrix (200x200, say), but it seems over-killed as its
rank is limited to typically 2 or 3. I sort of remember being taught
that numerical techniques can find iteratively decreasing eigenvalues
and corresponding orthogonal eigenvectors, which would provide a nice
alternative (once I have the first 3, say, I stop th...
2004 Oct 06
3
crossprod vs %*% timing
Hi
the manpage says that crossprod(x,y) is formally equivalent to, but
faster than, the call 't(x) %*% y'.
I have a vector 'a' and a matrix 'A', and need to evaluate 't(a) %*% A
%*% a' many many times, and performance is becoming crucial. With
f1 <- function(a,X){ ignore <- t(a) %*% X %*% a }
f2 <- function(a...