Displaying 3 results from an estimated 3 matches for "allowdrift".
2010 Jun 28
0
Forecast Package in R: auto.arima function
...time-series into 6-7 groups and apply
the same auto-regressive model.(Essentially want a best fit auto-regressive
model for each of the groups).
For a single time-series if I apply:
fit<-auto.arima(<series1>,d=NA,D=0,max.p=6,max.q=0,max.order=6,stationary=F,ic=c("aic"),trace=T,allowdrift=F)
will the differencing be done internally and the final coefficients for the
AR parameters be outputted by the coef(fit) function? Or do I have to make
the series stationary before I apply the auto.arima function?
I.e if finally my result is something like
Coefficients:
         ar1      ar2  i...
2011 Dec 17
0
auto.arima from the Forecast package
Hi,
I've got a little problem using auto.arima.
I run the following command 
auto.arima(drivers,ic="aic",d=1,D=1,max.order=10,max.p=5,max.q=5,max.P=5,max.Q=5,stepwise=FALSE,allowdrift=FALSE)
and I get the following output :
Series: drivers 
ARIMA(0,1,1)(5,1,1)[12]                    
Coefficients:
          ma1     sar1     sar2     sar3     sar4     sar5     sma1
      -0.6421  -0.1341  -0.2063  -0.1076  -0.2361  -0.2205  -0.7387
s.e.   0.0718   0.1273   0.1061   0.1063   0....
2011 May 10
0
Series temporales
...cnica 
oscila entre 0-1 y pretendemos una vez estimada la eficiencia aplicar un 
modelo ARIMA. Hemos estimado con el comando auto.arima con y sin drift y 
nos muestra estos resultados el gráfico que te adjunto.
Series: Eficiencia 
ARIMA(1,1,1)                    
 
Call: auto.arima(x = Eficiencia, allowdrift = TRUE) 
 
Coefficients:
         ar1      ma1
      0.7720  -0.9644
s.e.  0.0813   0.0363
 
sigma^2 estimated as 0.0001375:  log likelihood = 287.15
AIC = -568.31   AICc = -568.04   BIC = -560.65
Antes te trabajar con R comence con statgraphics (es muy elemental, pero 
tiene una ayuda que te ind...