Displaying 20 results from an estimated 542 matches for "3q".
Did you mean:
  q3
  
2017 Dec 27
3
Answered time on channel
...st" channel.  Below is an untested example, but is
> inspired by dialplan code I use in production.  Maybe it will help.
>
> [outbound] ; this is called on the incoming (caller) channel
> exten => _X.,1,Noop
>  same => n,Set(MASTER_CHANNEL(start_timestamp)=${STRFTIME(,,%s.%3q)})
>  same => n,Set(CHANNEL(hangup_handler_push)=hangup_handler,s,1)
>  same => n,Set(MASTER_CHANNEL(callid_ingress)=${SIPCALLID})
>  same => n, *** unrelated dialplan, AGIs, etc. ***
>  same => n,Dial(SIP/${EXTEN}@1.1.1.1,,U(answer_handler)b(pre_dial_
> handler^s^1)g
>...
2011 Sep 19
1
regression summary results pvalues and coefficients into a excel
...nction(x){x["Pr(>|t|)"][1:2,]}))
6) write.table(t(regpvalues), file = "regression-resultsheadshape.txt",
quote = F, sep ='\t')
> regressionresults
$CUST_54_PI410671829
Call:
lm(formula = morphtrait ~ x, data = m)
Residuals:
     Min       1Q   Median       3Q      Max
-0.23217 -0.08980 -0.04592 -0.00947  1.07688
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.5985797  0.0364510  16.421   <2e-16 ***
x           0.0005372  0.0011161   0.481    0.632
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Re...
2009 Mar 17
2
formula question
...> test.df
            y  x
1  -0.9261650  1
2   1.5702700  2
3   0.1673920  3
4   0.7893085  4
5   0.3576875  5
6  -1.4620915  6
7  -0.5506215  7
8  -0.3480292  8
9  -1.2344036  9
10  0.8502660 10
> summary(lm(exp(y)~x))
Call:
lm(formula = exp(y) ~ x)
Residuals:
    Min      1Q  Median      3Q     Max
-1.6360 -0.6435 -0.4722  0.4215  2.9127
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept)   2.1689     0.9782   2.217   0.0574 .
x            -0.1368     0.1577  -0.868   0.4108
---
Signif. codes:  0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1
Residual standar...
2017 Dec 26
4
Answered time on channel
Hi,
I have a dial plan where I need to notify an external system when a call
was answered and when the call hung up. In both requests the start time
needs to be the same. My Dialplan looks something like this:
[outbound]
Exten => _X.,1,Dial(SIP/${EXTEN}@1.1.1.1,,U(call-answer-from-carrier))
Exten => h,1,NoOp(ANSWERED_TIME: ${ANSWEREDTIME} >>> DIAL_TIME:
${DIALEDTIME}
2004 Feb 28
2
questions about anova
...Sq    Df      Mean Sq  F value     Pr(>F)
Regression 215.7182     9 23.968693976 2686.508 < 2.22e-16
Deviation  480.1218 53814  0.008921876
Total      695.8401 53823
Multiple R-Squared: 0.31,       Adjusted R-squared: 0.3099
AIC: (df = 53814) -146390.9
Fitted:
     Min       1Q   Median       3Q      Max
0.007852 0.075619 0.100498 0.139042 0.338186
Residuals:
     Min       1Q   Median       3Q      Max
-0.29758 -0.04418 -0.01411  0.02536  0.51484
>
So, what's the meaning of the "Pr(>F)?
2 - I have six trend surfaces, and I like to make a anova for the significance
of in...
2011 Nov 20
3
logistic regression by glm
...egression. and treat both response and
predictor as factor
In my first try:
*******************************************************************************
Call:
glm(formula = as.factor(diagnostic) ~ as.factor(7161521) + 
as.factor(2281517), family = binomial())
Deviance Residuals: 
Min 1Q Median 3Q Max 
-1.5370 -1.0431 -0.9416 1.3065 1.4331 
Coefficients:
Estimate Std. Error z value Pr(>|z|) 
(Intercept) -0.58363 0.27948 -2.088 0.0368 *
as.factor(7161521)2 1.39811 0.66618 2.099 0.0358 *
as.factor(7161521)3 0.28192 0.83255 0.339 0.7349 
as.factor(2281517)2 -1.11284 0.63692 -1.747 0.0806 ....
2012 Jan 09
1
Different lm() Residuals Output
All but one of the summaries of multiple linear regressions in this
analysis set present the residuals by min, 1Q, median, 3Q, and max. Example:
lm(formula = TDS ~ Cond + Ca + Cl + Mg + Na + SO4, data = snow.cast)
Residuals:
      Min       1Q   Median       3Q      Max -277.351  -32.551   -2.621 
40.812  245.272
The one that doesn't has only a small number of rows (23) and presents the
results as:
lm(formula = TDS...
2003 Nov 03
2
Odd r-squared
...of the same model, and should yield the same r-squared.
Any insight much appreciated
Simon.
> set.seed(10,kind=NULL)
> x <- runif(10)
> g <- gl(2,5)
> y <- runif(10)
>
> summary(lm(y ~ g*x))
Call:
lm(formula = y ~ g * x)
Residuals:
     Min       1Q   Median       3Q      Max
-0.35205 -0.14021  0.02486  0.13958  0.39671
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept)   0.3138     0.2749   1.141    0.297
g2           -0.1568     0.4339  -0.361    0.730
x             0.3556     0.6082   0.585    0.580
g2:x          0.3018     1.0522...
2011 Feb 18
3
lm without intercept
Hi,
I am not a statistics expert, so I have this question. A linear model
gives me the following summary:
Call:
lm(formula = N ~ N_alt)
Residuals:
    Min      1Q  Median      3Q     Max 
-110.30  -35.80  -22.77   38.07  122.76 
Coefficients:
            Estimate Std. Error t value Pr(>|t|)  
(Intercept)  13.5177   229.0764   0.059   0.9535  
N_alt         0.2832     0.1501   1.886   0.0739 .
---
Signif. codes:  0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1 
Residual...
2004 Aug 26
1
Why terms are dropping out of an lm() model
...2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
> summary(d$r)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.
  18.68   19.88   21.94   21.48   22.64   24.36
> summary(d.lm1 <- lm(r ~ p1 + p2, data=d))
Call:
lm(formula = r ~ p1 + p2, data = d)
Residuals:
     Min       1Q   Median       3Q      Max
-0.58107 -0.09248  0.02492  0.26061  0.49617
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 18.66417    0.06591  283.17   <2e-16 ***
p1           1.96145    0.04036   48.60   <2e-16 ***
p2           0.85801    0.04036   21.26   <2e-16 ***
---
Signif...
2008 Oct 02
1
missing output in summary() and anova()
...140.04, 142.44, 145.47, 144.34, 146.30, 147.54, 147.80)
> x<-c(194.5, 194.3, 197.9, 198.4, 199.4, 199.9, 200.9, 201.1, 201.4, 201.3,
203.6, 204.6, 209.5,208.6, 210.7, 211.9, 212.2)
> fitted.results<-lm(y~x)
> summary(fitted.results)
Call:
lm(formula = y ~ x)
Residuals:
Min 1Q Median 3Q Max
-0.32220 -0.14473 -0.06664 0.02184 1.35978
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -42.13778 3.34020 -12.62 2.18e-09 ***
x 0.89549 0.01645 54.43 < 2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Res...
2013 Nov 08
1
Different output from lm() and lmPerm lmp() if categorical variables are included in the analysis
...+ runif(100,-20,20)
test <- data.frame(x1=testx1,x2=
testx2,y=testy)
atest <- lm(y ~ x1*x2,data=test)
aptest <- lmp(y ~ x1*x2,data=test,perm = "", seqs = TRUE, center = FALSE)
summary(atest)
Call:
lm(formula = y ~ x1 * x2, data = test)
Residuals:
    Min       1Q   Median       3Q      Max
-17.1777  -9.5306  -0.9733   7.6840  22.2728
Coefficients:
        Estimate Std. Error t value Pr(>|t|)
(Intercept)  -2.0036     3.2488  -0.617    0.539
x1            5.3346     0.2861  18.646   <2e-16 ***
x2b           2.4952     5.2160   0.478    0.633
x1:x2b       -0.3833     0.4...
2008 Jan 05
2
Behavior of ordered factors in glm
...alled a "test 
of trend"), at least as a starting point.
> age.mdl<-glm(actual~issuecat,data=xxx,family="poisson")
> summary(age.mdl)
Call:
glm(formula = actual ~ issuecat, family = "poisson", data = xxx)
Deviance Residuals: 
    Min       1Q   Median       3Q      Max  
-0.3190  -0.2262  -0.1649  -0.1221   5.4776  
Coefficients:
            Estimate Std. Error z value Pr(>|z|)    
(Intercept) -4.31321    0.04865 -88.665   <2e-16 ***
issuecat.L   2.12717    0.13328  15.960   <2e-16 ***
issuecat.Q  -0.06568    0.11842  -0.555    0.579    
issuec...
2007 Dec 07
1
Adding a subset to a glm messes up factors?
...If I dont use subsets then all the factors are shown. I have copied the output from summary for both cases. 
Thanks for the help,
Muri
> model<-glm(log(cpue)~year,family=gaussian)
Call:
glm(formula = log(cpue) ~ year, family = gaussian)
Deviance Residuals: 
    Min       1Q   Median       3Q      Max  
-2.0962  -0.5851  -0.1241   0.4805   3.9236  
Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)   0.8899     0.1844   4.825 1.42e-06 ***
year1990     -0.6107     0.1925  -3.173  0.00152 ** 
year1991     -1.7466     0.1902  -9.184  < 2e-16 ***
year1992...
2006 Sep 29
2
scatter3d() model.summary coefficients?
...amples$y, samples$x2, fit="linear",
residuals=TRUE, bg="white", axis.scales=TRUE, grid=TRUE,
ellipsoid=FALSE, xlab="x1", ylab="y", zlab="x2", model.summary=TRUE)
$linear
Call:
lm(formula = y ~ x + z)
Residuals:
      Min        1Q    Median        3Q       Max 
-0.096984 -0.022303  0.004758  0.029354  0.091188 
Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept)  0.708945   0.007005  101.20   <2e-16 ***
x            0.278540   0.011262   24.73   <2e-16 ***
z           -0.688175   0.011605  -59.30   <2e-1...
2007 Sep 21
1
Stats 101 : lm with/without intercept
...actors a Population variable into 3 levels.  I want to
investigate whether that categorical variable has some relation with my
dependent variable, so I go :
lm(Cout.ton ~ ClassePop33000, data=ech2)
Call:
lm(formula = Cout.ton ~ ClassePop33000, data = ech2)
Residuals:
    Min      1Q  Median      3Q     Max 
-182.24  -62.91  -22.76   66.38  277.39 
Coefficients:
                                   Estimate Std. Error t value Pr(>|t|)    
(Intercept)                          231.66      11.50  20.141  < 2e-16 ***
ClassePop33000[T.[3000,25000)]       -72.91      16.70  -4.366 2.19e-05 ***...
2011 Nov 15
2
Models with ordered and unordered factors
...18 38 62 30 78 34 ...
# $ Day: Factor w/ 3 levels "Day 1","Day 2",..: 1 1 1 1 1 1 2 2 2 2 ...
summary(lm(y~Day,data=dataf))  #Day 2 is not significantly different from
Day 1, but Day 3 is.
#
#Call:
#lm(formula = y ~ Day, data = dataf)
#
#Residuals:
#    Min      1Q  Median      3Q     Max
#-39.833 -14.458  -3.833  13.958  42.167
#
#Coefficients:
#            Estimate Std. Error t value Pr(>|t|)
#(Intercept)   29.833      9.755   3.058  0.00797 **
#DayDay 2      18.833     13.796   1.365  0.19234
#DayDay 3      37.000     13.796   2.682  0.01707 *
#---
#Signif. codes:  0 ‘...
2011 Nov 14
3
What is the CADF test criterion="BIC" report?
...ADF test
t-test statistic:                          -1.389086
p-value:                                    0.855681
Max lag of the diff. dependent variable:    1.000000
Call:
dynlm(formula = formula(model), start = obs.1, end = obs.T)
Residuals:
      Min       1Q   Median       3Q      Max
-0.79726 -0.20587 -0.03332  0.23840  0.70460
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
(Intercept) 24.342321  17.435476   1.396    0.167
trnd         0.009959   0.006941   1.435    0.156
L(y, 1)     -0.026068   0.018767  -1.389    0.856
L(d(y), 1)   0.615983   0....
2004 Feb 08
1
APE: compar.gee( )
...uot;
[1] "running glm to get initial regression estimate"
[1] 7.9500000 0.5155172
Call:
  formula: alt ~ R
Number of observations:  37 
Model:
 Link:                      identity 
 Variance to Mean Relation: gaussian 
Summary of Residuals:
        Min          1Q      Median          3Q         Max 
-12.1267954  -9.4267954  -7.4267954  -0.4267954  20.7903982 
Coefficients:
            Estimate     S.E.        t Pr(T > |t|)
(Intercept) 9.209602 4.760274 1.934679  0.08798892
R1          3.217194 2.548273 1.262500  0.24130121
Estimated Scale Parameter:  86.39367
"Phylogene...
2010 Dec 15
1
lmList and lapply(... lm) different std. errors
...ays, using the following code:   (data
is given at the end of this message) 
reg <- lapply(split(TRY, VARIABLE2), function(X){lm(X2 ~ X3, data=X)}) 
lapply(reg, summary) 
Which produces the following: 
$`1` 
Call: 
lm(formula = X2 ~ X3, data = X) 
Residuals: 
     Min       1Q   Median       3Q      Max 
-1.24233 -0.30028  0.03706  0.46170  1.12408 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)   3.0705     0.2323  13.215 5.95e-15 *** 
X3            0.4744     0.2640   1.797   0.0813 .   
--- 
Signif. codes:  0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1...