Displaying 8 results from an estimated 8 matches for "0.95439".
Did you mean:
0.9543
2016 Mar 24
3
summary( prcomp(*, tol = .) ) -- and 'rank.'
Following from the R-help thread of March 22 on "Memory usage in prcomp",
I've started looking into adding an optional 'rank.' argument
to prcomp allowing to more efficiently get only a few PCs
instead of the full p PCs, say when p = 1000 and you know you
only want 5 PCs.
(https://stat.ethz.ch/pipermail/r-help/2016-March/437228.html
As it was mentioned, we already
2016 Mar 24
3
summary( prcomp(*, tol = .) ) -- and 'rank.'
I agree with Kasper, this is a 'big' issue. Does your method of taking only
n PCs reduce the load on memory?
The new addition to the summary looks like a good idea, but Proportion of
Variance as you describe it may be confusing to new users. Am I correct in
saying Proportion of variance describes the amount of variance with respect
to the number of components the user chooses to show? So
2016 Mar 25
2
summary( prcomp(*, tol = .) ) -- and 'rank.'
> On 25 Mar 2016, at 10:41 am, peter dalgaard <pdalgd at gmail.com> wrote:
>
> As I see it, the display showing the first p << n PCs adding up to 100% of the variance is plainly wrong.
>
> I suspect it comes about via a mental short-circuit: If we try to control p using a tolerance, then that amounts to saying that the remaining PCs are effectively zero-variance, but
2016 Mar 24
0
summary( prcomp(*, tol = .) ) -- and 'rank.'
Martin, I fully agree. This becomes an issue when you have big matrices.
(Note that there are awesome methods for actually only computing a small
number of PCs (unlike your code which uses svn which gets all of them);
these are available in various CRAN packages).
Best,
Kasper
On Thu, Mar 24, 2016 at 1:09 PM, Martin Maechler <maechler at stat.math.ethz.ch
> wrote:
> Following from
2016 Mar 25
0
summary( prcomp(*, tol = .) ) -- and 'rank.'
As I see it, the display showing the first p << n PCs adding up to 100% of the variance is plainly wrong.
I suspect it comes about via a mental short-circuit: If we try to control p using a tolerance, then that amounts to saying that the remaining PCs are effectively zero-variance, but that is (usually) not the intention at all.
The common case is that the remainder terms have a roughly
2016 Mar 25
0
summary( prcomp(*, tol = .) ) -- and 'rank.'
> On 25 Mar 2016, at 10:08 , Jari Oksanen <jari.oksanen at oulu.fi> wrote:
>
>>
>> On 25 Mar 2016, at 10:41 am, peter dalgaard <pdalgd at gmail.com> wrote:
>>
>> As I see it, the display showing the first p << n PCs adding up to 100% of the variance is plainly wrong.
>>
>> I suspect it comes about via a mental short-circuit: If we
2016 Mar 22
3
Memory usage in prcomp
Hi All:
I am running prcomp on a very large array, roughly [500000, 3650]. The array itself is 16GB. I am running on a Unix machine and am running ?top? at the same time and am quite surprised to see that the application memory usage is 76GB. I have the ?tol? set very high (.8) so that it should only pull out a few components. I am surprised at this memory usage because prcomp uses the SVD
2016 Mar 22
3
Memory usage in prcomp
Hi All:
I am running prcomp on a very large array, roughly [500000, 3650]. The array itself is 16GB. I am running on a Unix machine and am running ?top? at the same time and am quite surprised to see that the application memory usage is 76GB. I have the ?tol? set very high (.8) so that it should only pull out a few components. I am surprised at this memory usage because prcomp uses the SVD