r@i@1290 m@iii@g oii @im@com
2019-Jun-06 16:49 UTC
[R] Plotting more than one regression line in ggplot
Hi Rui, NewestdataUltra looks like this (Note that "HistoricalMEDIAN" is hidden, but it follows "RCP8.5MEDIAN" listing the same way): x variable value L1 1 0.000000000 y 0.00000000 onepctCO2MEDIAN 2 0.006794447 y 4.90024902 onepctCO2MEDIAN 3 0.014288058 y 0.16079999 onepctCO2MEDIAN 4 0.022087920 y 6.63491326 onepctCO2MEDIAN 5 0.030797357 y -1.24295056 onepctCO2MEDIAN 6 0.038451072 y 1.56433744 onepctCO2MEDIAN 7 0.048087904 y -2.26590352 onepctCO2MEDIAN 8 0.058677729 y 2.20700446 onepctCO2MEDIAN 9 0.069261406 y -2.36770013 onepctCO2MEDIAN 10 0.080524530 y -1.09135062 onepctCO2MEDIAN 11 0.092760246 y 0.40999399 onepctCO2MEDIAN 12 0.103789609 y -0.12597268 onepctCO2MEDIAN 13 0.116953168 y -2.41382534 onepctCO2MEDIAN 14 0.129253298 y 7.08902570 onepctCO2MEDIAN 15 0.141710050 y -0.75935388 onepctCO2MEDIAN 16 0.156002052 y 0.04544160 onepctCO2MEDIAN 17 0.170648172 y -1.53496826 onepctCO2MEDIAN 18 0.185318425 y 6.55242014 onepctCO2MEDIAN 19 0.199463055 y -0.83125628 onepctCO2MEDIAN 20 0.213513337 y -2.50991826 onepctCO2MEDIAN 21 0.228839271 y 0.13659682 onepctCO2MEDIAN 22 0.246981293 y -1.37198445 onepctCO2MEDIAN 23 0.263012767 y -0.87129883 onepctCO2MEDIAN 24 0.278505564 y 0.66325836 onepctCO2MEDIAN 25 0.293658361 y 0.79380363 onepctCO2MEDIAN 26 0.310747266 y 3.48806374 onepctCO2MEDIAN 27 0.325990349 y -4.46122081 onepctCO2MEDIAN 28 0.342517540 y 0.08717340 onepctCO2MEDIAN 29 0.362751633 y -1.41715777 onepctCO2MEDIAN 30 0.380199537 y -0.99565082 onepctCO2MEDIAN 31 0.394992948 y 0.32155262 onepctCO2MEDIAN 32 0.414373398 y 3.14038657 onepctCO2MEDIAN 33 0.430690214 y -0.73760988 onepctCO2MEDIAN 34 0.449738145 y -2.48605407 onepctCO2MEDIAN 35 0.470167458 y -3.42358584 onepctCO2MEDIAN 36 0.489019871 y 0.48247475 onepctCO2MEDIAN 37 0.507242471 y -0.97853863 onepctCO2MEDIAN 38 0.524314284 y 8.53596838 onepctCO2MEDIAN 39 0.543750525 y 5.48447420 onepctCO2MEDIAN 40 0.564234197 y 3.21493666 onepctCO2MEDIAN 41 0.583679616 y 3.91689160 onepctCO2MEDIAN 42 0.601459444 y 4.49070196 onepctCO2MEDIAN 43 0.619924664 y 6.54104103 onepctCO2MEDIAN 44 0.639932007 y 4.80686500 onepctCO2MEDIAN 45 0.661347181 y 8.15101701 onepctCO2MEDIAN 46 0.684117317 y 0.26974132 onepctCO2MEDIAN 47 0.704829752 y -0.18075007 onepctCO2MEDIAN 48 0.725045770 y 9.71812491 onepctCO2MEDIAN 49 0.745165825 y 1.54064657 onepctCO2MEDIAN 50 0.765016139 y -1.64760409 onepctCO2MEDIAN 51 0.783461511 y 4.80246029 onepctCO2MEDIAN 52 0.806382924 y 4.04215160 onepctCO2MEDIAN 53 0.829241335 y 9.37565122 onepctCO2MEDIAN 54 0.849924415 y 5.33050497 onepctCO2MEDIAN 55 0.871352434 y 7.54458026 onepctCO2MEDIAN 56 0.893632233 y 6.46795471 onepctCO2MEDIAN 57 0.916052133 y 2.80960651 onepctCO2MEDIAN 58 0.938579470 y 5.39216613 onepctCO2MEDIAN 59 0.959907651 y 7.20436888 onepctCO2MEDIAN 60 0.981643587 y 3.33508065 onepctCO2MEDIAN 61 1.004116774 y 8.86907070 onepctCO2MEDIAN 62 1.028363466 y 1.78612989 onepctCO2MEDIAN 63 1.054009140 y 6.25550382 onepctCO2MEDIAN 64 1.072440803 y 7.60792365 onepctCO2MEDIAN 65 1.094457805 y 7.68714831 onepctCO2MEDIAN 66 1.123176277 y 4.77877639 onepctCO2MEDIAN 67 1.149430871 y 12.71105018 onepctCO2MEDIAN 68 1.170912921 y -0.71562844 onepctCO2MEDIAN 69 1.196743071 y 1.64908992 onepctCO2MEDIAN 70 1.218625903 y 3.03630241 onepctCO2MEDIAN 71 1.241868377 y 4.29747688 onepctCO2MEDIAN 72 1.267941594 y 1.95437781 onepctCO2MEDIAN 73 1.290708780 y 3.99869637 onepctCO2MEDIAN 74 1.313222289 y 4.51794725 onepctCO2MEDIAN 75 1.339045882 y 0.93379048 onepctCO2MEDIAN 76 1.362803459 y 3.30507700 onepctCO2MEDIAN 77 1.384450197 y 3.54229702 onepctCO2MEDIAN 78 1.409720302 y 5.99736597 onepctCO2MEDIAN 79 1.435851157 y 0.50818686 onepctCO2MEDIAN 80 1.455592215 y 7.96616301 onepctCO2MEDIAN 81 1.479495347 y 9.94604963 onepctCO2MEDIAN 82 1.506051958 y 3.79083717 onepctCO2MEDIAN 83 1.525728464 y 2.57358469 onepctCO2MEDIAN 84 1.549362063 y 10.14049742 onepctCO2MEDIAN 85 1.573440671 y 13.74083036 onepctCO2MEDIAN 86 1.600278735 y 0.93357712 onepctCO2MEDIAN 87 1.623879492 y 9.75887417 onepctCO2MEDIAN 88 1.650029302 y 1.27693947 onepctCO2MEDIAN 89 1.672362328 y 13.49709060 onepctCO2MEDIAN 90 1.700221121 y 10.20875018 onepctCO2MEDIAN 91 1.724793375 y 1.68112753 onepctCO2MEDIAN 92 1.751070559 y 6.11789915 onepctCO2MEDIAN 93 1.778022110 y -0.15676262 onepctCO2MEDIAN 94 1.803022087 y 3.82374792 onepctCO2MEDIAN 95 1.830668867 y 4.43314679 onepctCO2MEDIAN 96 1.855736911 y 5.97907067 onepctCO2MEDIAN 97 1.882615030 y 11.31043325 onepctCO2MEDIAN 98 1.909218490 y 8.21426074 onepctCO2MEDIAN 99 1.938130021 y 15.32096736 onepctCO2MEDIAN 100 1.963727593 y 5.81782169 onepctCO2MEDIAN 101 1.993271947 y 9.60049074 onepctCO2MEDIAN 102 2.022548139 y 3.40636456 onepctCO2MEDIAN 103 2.050679922 y 4.73750104 onepctCO2MEDIAN 104 2.078064442 y 3.01330195 onepctCO2MEDIAN 105 2.104113460 y 5.56595225 onepctCO2MEDIAN 106 2.133597612 y 12.03463325 onepctCO2MEDIAN 107 2.164026260 y -0.40283200 onepctCO2MEDIAN 108 2.194852829 y 10.59967795 onepctCO2MEDIAN 109 2.224257946 y 5.44795837 onepctCO2MEDIAN 110 2.252194643 y 4.70523736 onepctCO2MEDIAN 111 2.277335048 y 14.09620189 onepctCO2MEDIAN 112 2.304058313 y 5.71490162 onepctCO2MEDIAN 113 2.330930233 y 3.77800721 onepctCO2MEDIAN 114 2.357022762 y 4.41206201 onepctCO2MEDIAN 115 2.386489272 y 4.18660848 onepctCO2MEDIAN 116 2.417503953 y 6.90788020 onepctCO2MEDIAN 117 2.448524356 y 2.78257393 onepctCO2MEDIAN 118 2.478698969 y 7.61717857 onepctCO2MEDIAN 119 2.510175705 y 10.24106026 onepctCO2MEDIAN 120 2.539697886 y 8.18207107 onepctCO2MEDIAN 121 2.567915559 y 4.82754944 onepctCO2MEDIAN 122 2.597463250 y 19.16248829 onepctCO2MEDIAN 123 2.627518773 y 16.06771094 onepctCO2MEDIAN 124 2.658759236 y 12.58970807 onepctCO2MEDIAN 125 2.692401528 y 9.29079880 onepctCO2MEDIAN 126 2.721903205 y 7.42625020 onepctCO2MEDIAN 127 2.753021359 y 9.39025180 onepctCO2MEDIAN 128 2.786313415 y 12.61935503 onepctCO2MEDIAN 129 2.819564104 y 11.11210397 onepctCO2MEDIAN 130 2.850823164 y 15.79070997 onepctCO2MEDIAN 131 2.880394101 y 10.74252868 onepctCO2MEDIAN 132 2.911391258 y 7.79714300 onepctCO2MEDIAN 133 2.942965150 y 8.80608578 onepctCO2MEDIAN 134 2.974468350 y 17.56062663 onepctCO2MEDIAN 135 3.008983612 y 17.30886049 onepctCO2MEDIAN 136 3.040015221 y 13.45005435 onepctCO2MEDIAN 137 3.072668672 y 14.63778842 onepctCO2MEDIAN 138 3.105982423 y 8.07985518 onepctCO2MEDIAN 139 0.467429527 y -1.55704023 RCP4.5MEDIAN 140 0.478266196 y -3.19367515 RCP4.5MEDIAN 141 0.489205229 y -2.44452679 RCP4.5MEDIAN 142 0.500039143 y 0.87504367 RCP4.5MEDIAN 143 0.511021115 y -0.39185002 RCP4.5MEDIAN 144 0.519874968 y -4.18935168 RCP4.5MEDIAN 145 0.528508358 y -3.64179524 RCP4.5MEDIAN 146 0.537377594 y -2.58167128 RCP4.5MEDIAN 147 0.546194211 y 2.20583694 RCP4.5MEDIAN 148 0.554720591 y -8.57764597 RCP4.5MEDIAN 149 0.563289814 y 2.88442536 RCP4.5MEDIAN 150 0.572032790 y -3.90829882 RCP4.5MEDIAN 151 0.580939066 y -3.39269048 RCP4.5MEDIAN 152 0.590921065 y -4.60849867 RCP4.5MEDIAN 153 0.601575326 y -1.62572657 RCP4.5MEDIAN 154 0.612425555 y 1.14198465 RCP4.5MEDIAN 155 0.623773319 y -3.38454122 RCP4.5MEDIAN 156 0.635363359 y 2.43414265 RCP4.5MEDIAN 157 0.646722666 y 3.30007615 RCP4.5MEDIAN 158 0.658285673 y -0.79555442 RCP4.5MEDIAN 159 0.670250852 y -2.05220500 RCP4.5MEDIAN 160 0.681702690 y -5.56808946 RCP4.5MEDIAN 161 0.693531145 y 2.24168605 RCP4.5MEDIAN 162 0.706016061 y -4.83673351 RCP4.5MEDIAN 163 0.718231249 y 0.40086819 RCP4.5MEDIAN 164 0.730190911 y -1.98026992 RCP4.5MEDIAN 165 0.741269845 y 0.39963115 RCP4.5MEDIAN 166 0.751000321 y -0.83241777 RCP4.5MEDIAN 167 0.760886972 y -1.66101404 RCP4.5MEDIAN 168 0.771137164 y -1.05452982 RCP4.5MEDIAN 169 0.781856383 y -1.18338156 RCP4.5MEDIAN 170 0.792607542 y 0.22722653 RCP4.5MEDIAN 171 0.803724128 y -1.90642564 RCP4.5MEDIAN 172 0.815066246 y 0.75010550 RCP4.5MEDIAN 173 0.826027437 y -1.31108646 RCP4.5MEDIAN 174 0.836766732 y 1.05961515 RCP4.5MEDIAN 175 0.847553312 y -2.06588010 RCP4.5MEDIAN 176 0.858331452 y 8.53403315 RCP4.5MEDIAN 177 0.869154422 y 0.09979751 RCP4.5MEDIAN 178 0.879572539 y -2.50854353 RCP4.5MEDIAN 179 0.889426601 y 5.29550783 RCP4.5MEDIAN 180 0.899009805 y 2.02909481 RCP4.5MEDIAN 181 0.908289566 y 2.66922982 RCP4.5MEDIAN 182 0.917284978 y -4.17757196 RCP4.5MEDIAN 183 0.926128960 y 3.40202916 RCP4.5MEDIAN 184 0.934752874 y -1.92292218 RCP4.5MEDIAN 185 0.943010943 y 6.36969150 RCP4.5MEDIAN 186 0.950999217 y 1.86490308 RCP4.5MEDIAN 187 0.958795701 y 8.32126161 RCP4.5MEDIAN 188 0.966310396 y 10.15048356 RCP4.5MEDIAN 189 0.973635493 y 6.68925964 RCP4.5MEDIAN 190 0.980834088 y -1.01615369 RCP4.5MEDIAN 191 0.987694790 y 0.20892853 RCP4.5MEDIAN 192 0.994548581 y -1.52787222 RCP4.5MEDIAN 193 1.001274595 y -0.72374597 RCP4.5MEDIAN 194 1.007810612 y 2.26062309 RCP4.5MEDIAN 195 1.014270389 y -2.40270340 RCP4.5MEDIAN 196 1.022719711 y -1.94548262 RCP4.5MEDIAN 197 1.032070810 y -1.13053235 RCP4.5MEDIAN 198 1.041118812 y 0.56107969 RCP4.5MEDIAN 199 1.050189571 y 3.27941835 RCP4.5MEDIAN 200 1.059380475 y 3.01333588 RCP4.5MEDIAN 201 1.067877585 y 4.87457336 RCP4.5MEDIAN 202 1.076078766 y 1.02457895 RCP4.5MEDIAN 203 1.084707357 y 4.49174869 RCP4.5MEDIAN 204 1.093223180 y 8.24629303 RCP4.5MEDIAN 205 1.101414382 y -0.03364132 RCP4.5MEDIAN 206 1.108886304 y 9.12509848 RCP4.5MEDIAN 207 1.115482896 y 1.74254621 RCP4.5MEDIAN 208 1.121856558 y 2.27004536 RCP4.5MEDIAN 209 1.127809421 y -0.65627179 RCP4.5MEDIAN 210 1.133265961 y 12.02566969 RCP4.5MEDIAN 211 1.138549712 y -1.04260843 RCP4.5MEDIAN 212 1.143910237 y -6.47611327 RCP4.5MEDIAN 213 1.149437787 y 8.88410567 RCP4.5MEDIAN 214 1.154488347 y -4.24916247 RCP4.5MEDIAN 215 1.159872903 y 7.90741918 RCP4.5MEDIAN 216 1.165477487 y -3.91386711 RCP4.5MEDIAN 217 1.171103424 y 1.02370701 RCP4.5MEDIAN 218 1.177498256 y -3.71206616 RCP4.5MEDIAN 219 1.184003888 y -1.05694182 RCP4.5MEDIAN 220 1.190395856 y 1.10501459 RCP4.5MEDIAN 221 1.197284280 y 2.67668639 RCP4.5MEDIAN 222 1.204590551 y 2.21693031 RCP4.5MEDIAN 223 1.210807614 y 2.90252830 RCP4.5MEDIAN 224 1.216470664 y 2.75093766 RCP4.5MEDIAN 225 1.221914148 y -0.73815245 RCP4.5MEDIAN 226 1.227580480 y 3.58554626 RCP4.5MEDIAN 227 1.233317788 y 10.89961658 RCP4.5MEDIAN 228 1.238093406 y 3.23374387 RCP4.5MEDIAN 229 0.466622908 y -1.92366466 RCP8.5MEDIAN 230 0.474211509 y 4.09292949 RCP8.5MEDIAN 231 0.480383051 y -0.84736312 RCP8.5MEDIAN 232 0.486304903 y -0.80597889 RCP8.5MEDIAN 233 0.492151615 y -0.50244413 RCP8.5MEDIAN 234 0.499312643 y 3.07785701 RCP8.5MEDIAN 235 0.508859905 y -6.15175322 RCP8.5MEDIAN 236 0.518758845 y -0.51590144 RCP8.5MEDIAN 237 0.528675758 y 3.33135956 RCP8.5MEDIAN 238 0.538928423 y 2.62280891 RCP8.5MEDIAN 239 0.549621221 y -6.90096009 RCP8.5MEDIAN 240 0.560062840 y -3.45706029 RCP8.5MEDIAN 241 0.570860791 y 1.36192518 RCP8.5MEDIAN 242 0.581923368 y 0.34822359 RCP8.5MEDIAN 243 0.592628298 y 3.06882935 RCP8.5MEDIAN 244 0.604230648 y -3.56142825 RCP8.5MEDIAN 245 0.615975167 y 10.35932554 RCP8.5MEDIAN 246 0.627448279 y 10.21751629 RCP8.5MEDIAN 247 0.639401050 y 3.31040335 RCP8.5MEDIAN 248 0.651949591 y -0.53558775 RCP8.5MEDIAN 249 0.664634427 y 2.66081860 RCP8.5MEDIAN 250 0.677343552 y 3.21379656 RCP8.5MEDIAN [ reached 'max' / getOption("max.print") -- omitted 212 rows ] If I wanted scatter plots and regression lines of onepctCO2MEDIAN, RCP4.5MEDIAN and RCP8.5MEDIAN, would I do something like this? :ggplot(subset(NewestdataUltra, L1 != 'onepctCO2MEDIAN'), aes(x, value, colour = L1)) + geom_point() + scale_color_manual(values =c("green", "blue" "red", "black")) + geom_smooth(method = lm, se=FALSE) Thanks, -----Original Message----- From: Rui Barradas <ruipbarradas at sapo.pt> To: rain1290 <rain1290 at aim.com>; r-help <r-help at R-project.org> Sent: Thu, Jun 6, 2019 11:53 am Subject: Re: [R] Plotting more than one regression line in ggplot Hello, It's impossible to say without seeing the data. What is the return value of df_tmp <- subset(NewestdataUltra, L1 != 'onepctCO2MEDIAN') unique(df_tmp$L1) The number of colors must be the same as length(unique(df_tmp$L1)) Hope this helps, Rui Barradas ?s 16:49 de 06/06/19, rain1290 at aim.com escreveu:> Hi Rui, > > Yes, you are right. It should be this, but I tried with only 3 colors, > as you suggested: > > ggplot(subset(NewestdataUltra, L1 != 'onepctCO2MEDIAN'), aes(x, value, > colour = L1)) + geom_point() + scale_color_manual(values =c("green", > "blue" "red")) + geom_smooth(method = lm, se=FALSE) > > **//___^ > **//___^I still end up with the same error, however, when I specify only > 3 colors. Why could this be? > > > -----Original Message----- > From: Rui Barradas <ruipbarradas at sapo.pt> > To: rain1290 <rain1290 at aim.com>; r-help <r-help at R-project.org> > Sent: Thu, Jun 6, 2019 11:18 am > Subject: Re: [R] Plotting more than one regression line in ggplot > > Hello, > > 1) In the text you say your dataset is named NewestdataUltra but in the > ggplot instruction it's Newestdata. One of these is wrong. > > 2) Is it onepctCO2MEDIAN or RCPonepctCO2MEDIAN? > > 3) You are filtering out the value in point ) above. So you only plot 3 > regression lines, you don't need 4 colors. > > > Hope this helps, > > Rui Barradas > > ?s 15:35 de 06/06/19, rain1290 at aim.com <mailto:rain1290 at aim.com> escreveu: >? > Hi Rui (and everyone), >? > >? > >? > Thank you for this! Yes, this did work fine, as I can see my scatter >? > plots and regression lines on the same plot, along with the appropriate >? > coloring scheme! :) >? > >? > Just one last question concerning this - I melted other dataframes into >? > my new "NewestdataUltra". I now have 4 objects listed in there in this >? > order (starting from the top of the list): "onepctCO2MEDIAN", >? > "RCP4.5MEDIAN", RCP8.5MEDIAN", and "HistoricalMEDIAN". I tried plotting >? > colored scattered plots and regression lines for these in this manner: >? > >? > ggplot(subset(Newestdata, L1 != 'RCPonepctCO2MEDIAN'), aes(x, value, >? > colour = L1)) + geom_point() + scale_color_manual(values =c("green", >? > "blue" "red", "black")) + geom_smooth(method = lm, se=FALSE) >? > >? > However, I received this error: >? > >? > Error: unexpected string constant in "ggplot(subset(NewestdataUltra, L1 >? > != 'RCPonepctCO2MEDIAN'), aes(x, value, colour = L1)) + geom_point() + >? > scale_color_manual(values =c("green", "blue" "red"" >? > >? > **//___^ >? > >? > Why would this error appear?? I think that I assigned the colors >? > correctly to each of the four objects in question, so why would this > occur? >? > >? > Thank you, once again! >? > >? > -----Original Message----- >? > From: Rui Barradas <ruipbarradas at sapo.pt <mailto:ruipbarradas at sapo.pt>> >? > To: rain1290 <rain1290 at aim.com <mailto:rain1290 at aim.com>>; r-help > <r-help at R-project.org <mailto:r-help at R-project.org>> >? > Sent: Thu, Jun 6, 2019 6:52 am >? > Subject: Re: [R] Plotting more than one regression line in ggplot >? > >? > Hello, >? > >? > You are confusing some of the values of L1 with L1 itself. >? > If you just want two of those values in your plot, "onepctCO2MEDIAN" and >? > "RCP8.5MEDIAN", you need to subset the data filtering out the rows with >? > L1 == "RCP4.5MEDIAN". >? > >? > And please forget geom_jitter, it is completely inappropriate for the >? > type of scatter plot you are trying to graph. You jitter when there is >? > overplotting, not as a general purpose technique. >? > >? > Here is one way to do it. >? > >? > >? > ggplot(subset(NewestdataUltra, L1 != 'RCP4.5MEDIAN'), >? >? ? ? ? ? aes(x, value, colour = L1)) + >? >? ? geom_point() + >? >? ? scale_color_manual(values = c("green", "red")) + >? >? ? geom_smooth(method = lm) >? > >? > >? > Hope this helps, >? > >? > Rui Barradas >? > >? > ?s 22:37 de 05/06/19, rain1290 at aim.com <mailto:rain1290 at aim.com> > <mailto:rain1290 at aim.com <mailto:rain1290 at aim.com>> escreveu: >? >? > Hi Rui (and everyone), >? >? > >? >? > Thank you so much for your response! Much appreciated! >? >? > >? >? > What if I wanted I create several regression lines and scatter > plots in >? >? > the same ggplot using a "melted" dataset? I would like to create a >? >? > scatter plot and regression line for both the objects of >? >? > "onepctCO2MEDIAN" and "RCP8.5MEDIANThis melted dataset looks like > this: >? >? > >? >? > >? >? >? >NewestdataUltra >? >? > >? >? > x variable value L1 1 0.000000000 y 0.00000000 onepctCO2MEDIAN 2 >? >? > 0.006794447 y 4.90024902 onepctCO2MEDIAN 3 0.014288058 y 0.16079999 >? >? > onepctCO2MEDIAN 4 0.022087920 y 6.63491326 onepctCO2MEDIAN 5 > 0.030797357 >? >? > y -1.24295056 onepctCO2MEDIAN 6 0.038451072 y 1.56433744 > onepctCO2MEDIAN >? >? > 7 0.048087904 y -2.26590352 onepctCO2MEDIAN 8 0.058677729 y 2.20700446 >? >? > onepctCO2MEDIAN 9 0.069261406 y -2.36770013 onepctCO2MEDIAN 10 >? >? > 0.080524530 y -1.09135062 onepctCO2MEDIAN 11 0.092760246 y 0.40999399 >? >? > onepctCO2MEDIAN 12 0.103789609 y -0.12597268 onepctCO2MEDIAN 13 >? >? > 0.116953168 y -2.41382534 onepctCO2MEDIAN 14 0.129253298 y 7.08902570 >? >? > onepctCO2MEDIAN 15 0.141710050 y -0.75935388 onepctCO2MEDIAN 16 >? >? > 0.156002052 y 0.04544160 onepctCO2MEDIAN 17 0.170648172 y -1.53496826 >? >? > onepctCO2MEDIAN 18 0.185318425 y 6.55242014 onepctCO2MEDIAN 19 >? >? > 0.199463055 y -0.83125628 onepctCO2MEDIAN 20 0.213513337 y -2.50991826 >? >? > onepctCO2MEDIAN 21 0.228839271 y 0.13659682 onepctCO2MEDIAN 22 >? >? > 0.246981293 y -1.37198445 onepctCO2MEDIAN 23 0.263012767 y -0.87129883 >? >? > onepctCO2MEDIAN 24 0.278505564 y 0.66325836 onepctCO2MEDIAN 25 >? >? > 0.293658361 y 0.79380363 onepctCO2MEDIAN 26 0.310747266 y 3.48806374 >? >? > onepctCO2MEDIAN 27 0.325990349 y -4.46122081 onepctCO2MEDIAN 28 >? >? > 0.342517540 y 0.08717340 onepctCO2MEDIAN 29 0.362751633 y -1.41715777 >? >? > onepctCO2MEDIAN 30 0.380199537 y -0.99565082 onepctCO2MEDIAN 31 >? >? > 0.394992948 y 0.32155262 onepctCO2MEDIAN 32 0.414373398 y 3.14038657 >? >? > onepctCO2MEDIAN 33 0.430690214 y -0.73760988 onepctCO2MEDIAN 34 >? >? > 0.449738145 y -2.48605407 onepctCO2MEDIAN 35 0.470167458 y -3.42358584 >? >? > onepctCO2MEDIAN 36 0.489019871 y 0.48247475 onepctCO2MEDIAN 37 >? >? > 0.507242471 y -0.97853863 onepctCO2MEDIAN 38 0.524314284 y 8.53596838 >? >? > onepctCO2MEDIAN 39 0.543750525 y 5.48447420 onepctCO2MEDIAN 40 >? >? > 0.564234197 y 3.21493666 onepctCO2MEDIAN 41 0.583679616 y 3.91689160 >? >? > onepctCO2MEDIAN 42 0.601459444 y 4.49070196 onepctCO2MEDIAN 43 >? >? > 0.619924664 y 6.54104103 onepctCO2MEDIAN 44 0.639932007 y 4.80686500 >? >? > onepctCO2MEDIAN 45 0.661347181 y 8.15101701 onepctCO2MEDIAN 46 >? >? > 0.684117317 y 0.26974132 onepctCO2MEDIAN 47 0.704829752 y -0.18075007 >? >? > onepctCO2MEDIAN 48 0.725045770 y 9.71812491 onepctCO2MEDIAN 49 >? >? > 0.745165825 y 1.54064657 onepctCO2MEDIAN 50 0.765016139 y -1.64760409 >? >? > onepctCO2MEDIAN 51 0.783461511 y 4.80246029 onepctCO2MEDIAN 52 >? >? > 0.806382924 y 4.04215160 onepctCO2MEDIAN 53 0.829241335 y 9.37565122 >? >? > onepctCO2MEDIAN 54 0.849924415 y 5.33050497 onepctCO2MEDIAN 55 >? >? > 0.871352434 y 7.54458026 onepctCO2MEDIAN 56 0.893632233 y 6.46795471 >? >? > onepctCO2MEDIAN 57 0.916052133 y 2.80960651 onepctCO2MEDIAN 58 >? >? > 0.938579470 y 5.39216613 onepctCO2MEDIAN 59 0.959907651 y 7.20436888 >? >? > onepctCO2MEDIAN 60 0.981643587 y 3.33508065 onepctCO2MEDIAN 61 >? >? > 1.004116774 y 8.86907070 onepctCO2MEDIAN 62 1.028363466 y 1.78612989 >? >? > onepctCO2MEDIAN 63 1.054009140 y 6.25550382 onepctCO2MEDIAN 64 >? >? > 1.072440803 y 7.60792365 onepctCO2MEDIAN 65 1.094457805 y 7.68714831 >? >? > onepctCO2MEDIAN 66 1.123176277 y 4.77877639 onepctCO2MEDIAN 67 >? >? > 1.149430871 y 12.71105018 onepctCO2MEDIAN 68 1.170912921 y -0.71562844 >? >? > onepctCO2MEDIAN 69 1.196743071 y 1.64908992 onepctCO2MEDIAN 70 >? >? > 1.218625903 y 3.03630241 onepctCO2MEDIAN 71 1.241868377 y 4.29747688 >? >? > onepctCO2MEDIAN 72 1.267941594 y 1.95437781 onepctCO2MEDIAN 73 >? >? > 1.290708780 y 3.99869637 onepctCO2MEDIAN 74 1.313222289 y 4.51794725 >? >? > onepctCO2MEDIAN 75 1.339045882 y 0.93379048 onepctCO2MEDIAN 76 >? >? > 1.362803459 y 3.30507700 onepctCO2MEDIAN 77 1.384450197 y 3.54229702 >? >? > onepctCO2MEDIAN 78 1.409720302 y 5.99736597 onepctCO2MEDIAN 79 >? >? > 1.435851157 y 0.50818686 onepctCO2MEDIAN 80 1.455592215 y 7.96616301 >? >? > onepctCO2MEDIAN 81 1.479495347 y 9.94604963 onepctCO2MEDIAN 82 >? >? > 1.506051958 y 3.79083717 onepctCO2MEDIAN 83 1.525728464 y 2.57358469 >? >? > onepctCO2MEDIAN 84 1.549362063 y 10.14049742 onepctCO2MEDIAN 85 >? >? > 1.573440671 y 13.74083036 onepctCO2MEDIAN 86 1.600278735 y 0.93357712 >? >? > onepctCO2MEDIAN 87 1.623879492 y 9.75887417 onepctCO2MEDIAN 88 >? >? > 1.650029302 y 1.27693947 onepctCO2MEDIAN 89 1.672362328 y 13.49709060 >? >? > onepctCO2MEDIAN 90 1.700221121 y 10.20875018 onepctCO2MEDIAN 91 >? >? > 1.724793375 y 1.68112753 onepctCO2MEDIAN 92 1.751070559 y 6.11789915 >? >? > onepctCO2MEDIAN 93 1.778022110 y -0.15676262 onepctCO2MEDIAN 94 >? >? > 1.803022087 y 3.82374792 onepctCO2MEDIAN 95 1.830668867 y 4.43314679 >? >? > onepctCO2MEDIAN 96 1.855736911 y 5.97907067 onepctCO2MEDIAN 97 >? >? > 1.882615030 y 11.31043325 onepctCO2MEDIAN 98 1.909218490 y 8.21426074 >? >? > onepctCO2MEDIAN 99 1.938130021 y 15.32096736 onepctCO2MEDIAN 100 >? >? > 1.963727593 y 5.81782169 onepctCO2MEDIAN 101 1.993271947 y 9.60049074 >? >? > onepctCO2MEDIAN 102 2.022548139 y 3.40636456 onepctCO2MEDIAN 103 >? >? > 2.050679922 y 4.73750104 onepctCO2MEDIAN 104 2.078064442 y 3.01330195 >? >? > onepctCO2MEDIAN 105 2.104113460 y 5.56595225 onepctCO2MEDIAN 106 >? >? > 2.133597612 y 12.03463325 onepctCO2MEDIAN 107 2.164026260 y > -0.40283200 >? >? > onepctCO2MEDIAN 108 2.194852829 y 10.59967795 onepctCO2MEDIAN 109 >? >? > 2.224257946 y 5.44795837 onepctCO2MEDIAN 110 2.252194643 y 4.70523736 >? >? > onepctCO2MEDIAN 111 2.277335048 y 14.09620189 onepctCO2MEDIAN 112 >? >? > 2.304058313 y 5.71490162 onepctCO2MEDIAN 113 2.330930233 y 3.77800721 >? >? > onepctCO2MEDIAN 114 2.357022762 y 4.41206201 onepctCO2MEDIAN 115 >? >? > 2.386489272 y 4.18660848 onepctCO2MEDIAN 116 2.417503953 y 6.90788020 >? >? > onepctCO2MEDIAN 117 2.448524356 y 2.78257393 onepctCO2MEDIAN 118 >? >? > 2.478698969 y 7.61717857 onepctCO2MEDIAN 119 2.510175705 y 10.24106026 >? >? > onepctCO2MEDIAN 120 2.539697886 y 8.18207107 onepctCO2MEDIAN 121 >? >? > 2.567915559 y 4.82754944 onepctCO2MEDIAN 122 2.597463250 y 19.16248829 >? >? > onepctCO2MEDIAN 123 2.627518773 y 16.06771094 onepctCO2MEDIAN 124 >? >? > 2.658759236 y 12.58970807 onepctCO2MEDIAN 125 2.692401528 y 9.29079880 >? >? > onepctCO2MEDIAN 126 2.721903205 y 7.42625020 onepctCO2MEDIAN 127 >? >? > 2.753021359 y 9.39025180 onepctCO2MEDIAN 128 2.786313415 y 12.61935503 >? >? > onepctCO2MEDIAN 129 2.819564104 y 11.11210397 onepctCO2MEDIAN 130 >? >? > 2.850823164 y 15.79070997 onepctCO2MEDIAN 131 2.880394101 y > 10.74252868 >? >? > onepctCO2MEDIAN 132 2.911391258 y 7.79714300 onepctCO2MEDIAN 133 >? >? > 2.942965150 y 8.80608578 onepctCO2MEDIAN 134 2.974468350 y 17.56062663 >? >? > onepctCO2MEDIAN 135 3.008983612 y 17.30886049 onepctCO2MEDIAN 136 >? >? > 3.040015221 y 13.45005435 onepctCO2MEDIAN 137 3.072668672 y > 14.63778842 >? >? > onepctCO2MEDIAN 138 3.105982423 y 8.07985518 onepctCO2MEDIAN 139 >? >? > 0.467429527 y -1.55704023 RCP4.5MEDIAN 140 0.478266196 y -3.19367515 >? >? > RCP4.5MEDIAN 141 0.489205229 y -2.44452679 RCP4.5MEDIAN 142 > 0.500039143 >? >? > y 0.87504367 RCP4.5MEDIAN 143 0.511021115 y -0.39185002 > RCP4.5MEDIAN 144 >? >? > 0.519874968 y -4.18935168 RCP4.5MEDIAN 145 0.528508358 y -3.64179524 >? >? > RCP4.5MEDIAN 146 0.537377594 y -2.58167128 RCP4.5MEDIAN 147 > 0.546194211 >? >? > y 2.20583694 RCP4.5MEDIAN 148 0.554720591 y -8.57764597 > RCP4.5MEDIAN 149 >? >? > 0.563289814 y 2.88442536 RCP4.5MEDIAN 150 0.572032790 y -3.90829882 >? >? > RCP4.5MEDIAN 151 0.580939066 y -3.39269048 RCP4.5MEDIAN 152 > 0.590921065 >? >? > y -4.60849867 RCP4.5MEDIAN 153 0.601575326 y -1.62572657 RCP4.5MEDIAN >? >? > 154 0.612425555 y 1.14198465 RCP4.5MEDIAN 155 0.623773319 y > -3.38454122 >? >? > RCP4.5MEDIAN 156 0.635363359 y 2.43414265 RCP4.5MEDIAN 157 > 0.646722666 y >? >? > 3.30007615 RCP4.5MEDIAN 158 0.658285673 y -0.79555442 RCP4.5MEDIAN 159 >? >? > 0.670250852 y -2.05220500 RCP4.5MEDIAN 160 0.681702690 y -5.56808946 >? >? > RCP4.5MEDIAN 161 0.693531145 y 2.24168605 RCP4.5MEDIAN 162 > 0.706016061 y >? >? > -4.83673351 RCP4.5MEDIAN 163 0.718231249 y 0.40086819 RCP4.5MEDIAN 164 >? >? > 0.730190911 y -1.98026992 RCP4.5MEDIAN 165 0.741269845 y 0.39963115 >? >? > RCP4.5MEDIAN 166 0.751000321 y -0.83241777 RCP4.5MEDIAN 167 > 0.760886972 >? >? > y -1.66101404 RCP4.5MEDIAN 168 0.771137164 y -1.05452982 RCP4.5MEDIAN >? >? > 169 0.781856383 y -1.18338156 RCP4.5MEDIAN 170 0.792607542 y > 0.22722653 >? >? > RCP4.5MEDIAN 171 0.803724128 y -1.90642564 RCP4.5MEDIAN 172 > 0.815066246 >? >? > y 0.75010550 RCP4.5MEDIAN 173 0.826027437 y -1.31108646 > RCP4.5MEDIAN 174 >? >? > 0.836766732 y 1.05961515 RCP4.5MEDIAN 175 0.847553312 y -2.06588010 >? >? > RCP4.5MEDIAN 176 0.858331452 y 8.53403315 RCP4.5MEDIAN 177 > 0.869154422 y >? >? > 0.09979751 RCP4.5MEDIAN 178 0.879572539 y -2.50854353 RCP4.5MEDIAN 179 >? >? > 0.889426601 y 5.29550783 RCP4.5MEDIAN 180 0.899009805 y 2.02909481 >? >? > RCP4.5MEDIAN 181 0.908289566 y 2.66922982 RCP4.5MEDIAN 182 > 0.917284978 y >? >? > -4.17757196 RCP4.5MEDIAN 183 0.926128960 y 3.40202916 RCP4.5MEDIAN 184 >? >? > 0.934752874 y -1.92292218 RCP4.5MEDIAN 185 0.943010943 y 6.36969150 >? >? > RCP4.5MEDIAN 186 0.950999217 y 1.86490308 RCP4.5MEDIAN 187 > 0.958795701 y >? >? > 8.32126161 RCP4.5MEDIAN 188 0.966310396 y 10.15048356 RCP4.5MEDIAN 189 >? >? > 0.973635493 y 6.68925964 RCP4.5MEDIAN 190 0.980834088 y -1.01615369 >? >? > RCP4.5MEDIAN 191 0.987694790 y 0.20892853 RCP4.5MEDIAN 192 > 0.994548581 y >? >? > -1.52787222 RCP4.5MEDIAN 193 1.001274595 y -0.72374597 > RCP4.5MEDIAN 194 >? >? > 1.007810612 y 2.26062309 RCP4.5MEDIAN 195 1.014270389 y -2.40270340 >? >? > RCP4.5MEDIAN 196 1.022719711 y -1.94548262 RCP4.5MEDIAN 197 > 1.032070810 >? >? > y -1.13053235 RCP4.5MEDIAN 198 1.041118812 y 0.56107969 > RCP4.5MEDIAN 199 >? >? > 1.050189571 y 3.27941835 RCP4.5MEDIAN 200 1.059380475 y 3.01333588 >? >? > RCP4.5MEDIAN 201 1.067877585 y 4.87457336 RCP4.5MEDIAN 202 > 1.076078766 y >? >? > 1.02457895 RCP4.5MEDIAN 203 1.084707357 y 4.49174869 RCP4.5MEDIAN 204 >? >? > 1.093223180 y 8.24629303 RCP4.5MEDIAN 205 1.101414382 y -0.03364132 >? >? > RCP4.5MEDIAN 206 1.108886304 y 9.12509848 RCP4.5MEDIAN 207 > 1.115482896 y >? >? > 1.74254621 RCP4.5MEDIAN 208 1.121856558 y 2.27004536 RCP4.5MEDIAN 209 >? >? > 1.127809421 y -0.65627179 RCP4.5MEDIAN 210 1.133265961 y 12.02566969 >? >? > RCP4.5MEDIAN 211 1.138549712 y -1.04260843 RCP4.5MEDIAN 212 > 1.143910237 >? >? > y -6.47611327 RCP4.5MEDIAN 213 1.149437787 y 8.88410567 > RCP4.5MEDIAN 214 >? >? > 1.154488347 y -4.24916247 RCP4.5MEDIAN 215 1.159872903 y 7.90741918 >? >? > RCP4.5MEDIAN 216 1.165477487 y -3.91386711 RCP4.5MEDIAN 217 > 1.171103424 >? >? > y 1.02370701 RCP4.5MEDIAN 218 1.177498256 y -3.71206616 > RCP4.5MEDIAN 219 >? >? > 1.184003888 y -1.05694182 RCP4.5MEDIAN 220 1.190395856 y 1.10501459 >? >? > RCP4.5MEDIAN 221 1.197284280 y 2.67668639 RCP4.5MEDIAN 222 > 1.204590551 y >? >? > 2.21693031 RCP4.5MEDIAN 223 1.210807614 y 2.90252830 RCP4.5MEDIAN 224 >? >? > 1.216470664 y 2.75093766 RCP4.5MEDIAN 225 1.221914148 y -0.73815245 >? >? > RCP4.5MEDIAN 226 1.227580480 y 3.58554626 RCP4.5MEDIAN 227 > 1.233317788 y >? >? > 10.89961658 RCP4.5MEDIAN 228 1.238093406 y 3.23374387 RCP4.5MEDIAN 229 >? >? > 0.466622908 y -1.92366466 RCP8.5MEDIAN 230 0.474211509 y 4.09292949 >? >? > RCP8.5MEDIAN 231 0.480383051 y -0.84736312 RCP8.5MEDIAN 232 > 0.486304903 >? >? > y -0.80597889 RCP8.5MEDIAN 233 0.492151615 y -0.50244413 RCP8.5MEDIAN >? >? > 234 0.499312643 y 3.07785701 RCP8.5MEDIAN 235 0.508859905 y > -6.15175322 >? >? > RCP8.5MEDIAN 236 0.518758845 y -0.51590144 RCP8.5MEDIAN 237 > 0.528675758 >? >? > y 3.33135956 RCP8.5MEDIAN 238 0.538928423 y 2.62280891 > RCP8.5MEDIAN 239 >? >? > 0.549621221 y -6.90096009 RCP8.5MEDIAN 240 0.560062840 y -3.45706029 >? >? > RCP8.5MEDIAN 241 0.570860791 y 1.36192518 RCP8.5MEDIAN 242 > 0.581923368 y >? >? > 0.34822359 RCP8.5MEDIAN 243 0.592628298 y 3.06882935 RCP8.5MEDIAN 244 >? >? > 0.604230648 y -3.56142825 RCP8.5MEDIAN 245 0.615975167 y 10.35932554 >? >? > RCP8.5MEDIAN 246 0.627448279 y 10.21751629 RCP8.5MEDIAN 247 > 0.639401050 >? >? > y 3.31040335 RCP8.5MEDIAN 248 0.651949591 y -0.53558775 > RCP8.5MEDIAN 249 >? >? > 0.664634427 y 2.66081860 RCP8.5MEDIAN 250 0.677343552 y 3.21379656 >? >? > RCP8.5MEDIAN Maybe something like this? >? >? > >? >? > lusher<-ggplot(NewestdataULTRA) + >? >? > geom_jitter(aes(x,value,onepctCO2MEDIAN=L1), colour="green") + >? >? > geom_smooth(aes(x, value, onepctCO2MEDIAN=L1), method=lm) + >? >? > geom_jitter(aes(x, value, RCP8.5MEDIAN=L1), colour="red")**//___^ >? >? > **//___^ >? >? > I receive this warning, however: >? >? > >? >? > Warning:Ignoring unknown aesthetics: onepctCO2MEDIAN Warning:Ignoring >? >? > unknown aesthetics: onepctCO2MEDIAN >? >? > >? >? > **//___^ >? >? > Perhaps I am not assigning the columns properly? Essentially, I just >? >? > want create two scatter plots and two regression lines for these two >? >? > objects. >? >? > >? >? > Once again, any assistance would be greatly appreciated! >? >? > >? >? > -----Original Message----- >? >? > From: Rui Barradas <ruipbarradas at sapo.pt > <mailto:ruipbarradas at sapo.pt> <mailto:ruipbarradas at sapo.pt > <mailto:ruipbarradas at sapo.pt>>> >? >? > To: rain1290 <rain1290 at aim.com <mailto:rain1290 at aim.com> > <mailto:rain1290 at aim.com <mailto:rain1290 at aim.com>>>; r-help >? > <r-help at R-project.org <mailto:r-help at R-project.org> > <mailto:r-help at R-project.org <mailto:r-help at R-project.org>>>; >? >? > r-sig-geo <r-sig-geo at r-project.org > <mailto:r-sig-geo at r-project.org> <mailto:r-sig-geo at r-project.org > <mailto:r-sig-geo at r-project.org>>> >? >? > Sent: Wed, Jun 5, 2019 10:52 am >? >? > Subject: Re: [R] Plotting more than one regression line in ggplot >? >? > >? >? > Hello, >? >? > >? >? > This is pretty basic ggplot. >? >? > >? >? > >? >? > lm1 <- ggplot(onepctCO2MEDIAN, aes(x, y)) + >? >? >? ? geom_point(colour = 'blue') + >? >? >? ? geom_smooth(method = 'lm') >? >? > >? >? > lm1 >? >? > >? >? > >? >? > If you want to combine several datasets, you will have to have a >? >? > variable telling which dataset is which. In the example below, this is >? >? > column 'id'. >? >? > >? >? > >? >? > onepctCO2MEDIAN2 <- onepctCO2MEDIAN >? >? > onepctCO2MEDIAN2$y <- jitter(onepctCO2MEDIAN2$y) + 2 >? >? > onepctCO2MEDIAN$id <- 1 >? >? > onepctCO2MEDIAN2$id <- 2 >? >? > df2 <- rbind(onepctCO2MEDIAN, onepctCO2MEDIAN2) >? >? > >? >? > ggplot(df2, aes(x, y, group = id, colour = factor(id))) + >? >? >? ? geom_point() + >? >? >? ? geom_smooth(method = 'lm') >? >? > >? >? > >? >? > Hope this helps, >? >? > >? >? > Rui Barradas >? >? > >? >? > ?s 15:21 de 05/06/19, rain1290--- via R-help escreveu: >? >? >? > I am trying to plot, using ggplot, a series of scatter plots with >? >? > regression lines for several datasets. I started with the following >? >? > dataset, "onepectCO2MEDIAN". The data for this dataset is as follows: >? >? >? >? ??? onepctCO2MEDIAN >? >? >? >? ??????????????????? x????????? y >? >? >? >? ??? layer.1?? 0.000000000? 0.0000000 >? >? >? >? ??? layer.2?? 0.006794447? 4.9002490 >? >? >? >? ??? layer.3?? 0.014288058? 0.1608000 >? >? >? >? ??? layer.4?? 0.022087920? 6.6349133 >? >? >? >? ??? layer.5?? 0.030797357 -1.2429506 >? >? >? >? ??? layer.6?? 0.038451072? 1.5643374 >? >? >? >? ??? layer.7?? 0.048087904 -2.2659035 >? >? >? >? ??? layer.8?? 0.058677729? 2.2070045 >? >? >? >? ??? layer.9?? 0.069261406 -2.3677001 >? >? >? >? ??? layer.10? 0.080524530 -1.0913506 >? >? >? >? ??? layer.11? 0.092760246? 0.4099940 >? >? >? >? ??? layer.12? 0.103789609 -0.1259727 >? >? >? >? ??? layer.13? 0.116953168 -2.4138253 >? >? >? >? ??? layer.14? 0.129253298? 7.0890257 >? >? >? >? ??? layer.15? 0.141710050 -0.7593539 >? >? >? >? ??? layer.16? 0.156002052? 0.0454416 >? >? >? >? ??? layer.17? 0.170648172 -1.5349683 >? >? >? >? ??? layer.18? 0.185318425? 6.5524201 >? >? >? >? ??? layer.19? 0.199463055 -0.8312563 >? >? >? >? ??? layer.20? 0.213513337 -2.5099183 >? >? >? >? ??? layer.21? 0.228839271? 0.1365968 >? >? >? >? ??? layer.22? 0.246981293 -1.3719845 >? >? >? >? ??? layer.23? 0.263012767 -0.8712988 >? >? >? >? ??? layer.24? 0.278505564? 0.6632584 >? >? >? >? ??? layer.25? 0.293658361? 0.7938036 >? >? >? >? ??? layer.26? 0.310747266? 3.4880637 >? >? >? >? ??? layer.27? 0.325990349 -4.4612208 >? >? >? >? ??? layer.28? 0.342517540? 0.0871734 >? >? >? >? ??? layer.29? 0.362751633 -1.4171578 >? >? >? >? ??? layer.30? 0.380199537 -0.9956508 >? >? >? >? ??? layer.31? 0.394992948? 0.3215526 >? >? >? >? ??? layer.32? 0.414373398? 3.1403866 >? >? >? >? ??? layer.33? 0.430690214 -0.7376099 >? >? >? >? ??? layer.34? 0.449738145 -2.4860541 >? >? >? >? ??? layer.35? 0.470167458 -3.4235858 >? >? >? >? ??? layer.36? 0.489019871? 0.4824748 >? >? >? >? ??? layer.37? 0.507242471 -0.9785386 >? >? >? >? ??? layer.38? 0.524314284? 8.5359684 >? >? >? >? ??? layer.39? 0.543750525? 5.4844742 >? >? >? >? ??? layer.40? 0.564234197? 3.2149367 >? >? >? >? ??? layer.41? 0.583679616? 3.9168916 >? >? >? >? ??? layer.42? 0.601459444? 4.4907020 >? >? >? >? ??? layer.43? 0.619924664? 6.5410410 >? >? >? >? ??? layer.44? 0.639932007? 4.8068650 >? >? >? >? ??? layer.45? 0.661347181? 8.1510170 >? >? >? >? ??? layer.46? 0.684117317? 0.2697413 >? >? >? >? ??? layer.47? 0.704829752 -0.1807501 >? >? >? >? ??? layer.48? 0.725045770? 9.7181249 >? >? >? >? ??? layer.49? 0.745165825? 1.5406466 >? >? >? >? ??? layer.50? 0.765016139 -1.6476041 >? >? >? >? ??? layer.51? 0.783461511? 4.8024603 >? >? >? >? ??? layer.52? 0.806382924? 4.0421516 >? >? >? >? ??? layer.53? 0.829241335? 9.3756512 >? >? >? >? ??? layer.54? 0.849924415? 5.3305050 >? >? >? >? ??? layer.55? 0.871352434? 7.5445803 >? >? >? >? ??? layer.56? 0.893632233? 6.4679547 >? >? >? >? ??? layer.57? 0.916052133? 2.8096065 >? >? >? >? ??? layer.58? 0.938579470? 5.3921661 >? >? >? >? ??? layer.59? 0.959907651? 7.2043689 >? >? >? >? ??? layer.60? 0.981643587? 3.3350806 >? >? >? >? ??? layer.61? 1.004116774? 8.8690707 >? >? >? >? ??? layer.62? 1.028363466? 1.7861299 >? >? >? >? ??? layer.63? 1.054009140? 6.2555038 >? >? >? >? ??? layer.64? 1.072440803? 7.6079236 >? >? >? >? ??? layer.65? 1.094457805? 7.6871483 >? >? >? >? ??? layer.66? 1.123176277? 4.7787764 >? >? >? >? ??? layer.67? 1.149430871 12.7110502 >? >? >? >? ??? layer.68? 1.170912921 -0.7156284 >? >? >? >? ??? layer.69? 1.196743071? 1.6490899 >? >? >? >? ??? layer.70? 1.218625903? 3.0363024 >? >? >? >? ??? layer.71? 1.241868377? 4.2974769 >? >? >? >? ??? layer.72? 1.267941594? 1.9543778 >? >? >? >? ??? layer.73? 1.290708780? 3.9986964 >? >? >? >? ??? layer.74? 1.313222289? 4.5179472 >? >? >? >? ??? layer.75? 1.339045882? 0.9337905 >? >? >? >? ??? layer.76? 1.362803459? 3.3050770 >? >? >? >? ??? layer.77? 1.384450197? 3.5422970 >? >? >? >? ??? layer.78? 1.409720302? 5.9973660 >? >? >? >? ??? layer.79? 1.435851157? 0.5081869 >? >? >? >? ??? layer.80? 1.455592215? 7.9661630 >? >? >? >? ??? layer.81? 1.479495347? 9.9460496 >? >? >? >? ??? layer.82? 1.506051958? 3.7908372 >? >? >? >? ??? layer.83? 1.525728464? 2.5735847 >? >? >? >? ??? layer.84? 1.549362063 10.1404974 >? >? >? >? ??? layer.85? 1.573440671 13.7408304 >? >? >? >? ??? layer.86? 1.600278735? 0.9335771 >? >? >? >? ??? layer.87? 1.623879492? 9.7588742 >? >? >? >? ??? layer.88? 1.650029302? 1.2769395 >? >? >? >? ??? layer.89? 1.672362328 13.4970906 >? >? >? >? ??? layer.90? 1.700221121 10.2087502 >? >? >? >? ??? layer.91? 1.724793375? 1.6811275 >? >? >? >? ??? layer.92? 1.751070559? 6.1178992 >? >? >? >? ??? layer.93? 1.778022110 -0.1567626 >? >? >? >? ??? layer.94? 1.803022087? 3.8237479 >? >? >? >? ??? layer.95? 1.830668867? 4.4331468 >? >? >? >? ??? layer.96? 1.855736911? 5.9790707 >? >? >? >? ??? layer.97? 1.882615030 11.3104333 >? >? >? >? ??? layer.98? 1.909218490? 8.2142607 >? >? >? >? ??? layer.99? 1.938130021 15.3209674 >? >? >? >? ??? layer.100 1.963727593? 5.8178217 >? >? >? >? ??? layer.101 1.993271947? 9.6004907 >? >? >? >? ??? layer.102 2.022548139? 3.4063646 >? >? >? >? ??? layer.103 2.050679922? 4.7375010 >? >? >? >? ??? layer.104 2.078064442? 3.0133019 >? >? >? >? ??? layer.105 2.104113460? 5.5659522 >? >? >? >? ??? layer.106 2.133597612 12.0346333 >? >? >? >? ??? layer.107 2.164026260 -0.4028320 >? >? >? >? ??? layer.108 2.194852829 10.5996780 >? >? >? >? ??? layer.109 2.224257946? 5.4479584 >? >? >? >? ??? layer.110 2.252194643? 4.7052374 >? >? >? >? ??? layer.111 2.277335048 14.0962019 >? >? >? >? ??? layer.112 2.304058313? 5.7149016 >? >? >? >? ??? layer.113 2.330930233? 3.7780072 >? >? >? >? ??? layer.114 2.357022762? 4.4120620 >? >? >? >? ??? layer.115 2.386489272? 4.1866085 >? >? >? >? ??? layer.116 2.417503953? 6.9078802 >? >? >? >? ??? layer.117 2.448524356? 2.7825739 >? >? >? >? ??? layer.118 2.478698969? 7.6171786 >? >? >? >? ??? layer.119 2.510175705 10.2410603 >? >? >? >? ??? layer.120 2.539697886? 8.1820711 >? >? >? >? ??? layer.121 2.567915559? 4.8275494 >? >? >? >? ??? layer.122 2.597463250 19.1624883 >? >? >? >? ??? layer.123 2.627518773 16.0677109 >? >? >? >? ??? layer.124 2.658759236 12.5897081 >? >? >? >? ??? layer.125 2.692401528? 9.2907988 >? >? >? >? ??? layer.126 2.721903205? 7.4262502 >? >? >? >? ??? layer.127 2.753021359? 9.3902518 >? >? >? >? ??? layer.128 2.786313415 12.6193550 >? >? >? >? ??? layer.129 2.819564104 11.1121040 >? >? >? >? ??? layer.130 2.850823164 15.7907100 >? >? >? >? ??? layer.131 2.880394101 10.7425287 >? >? >? >? ??? layer.132 2.911391258? 7.7971430 >? >? >? >? ??? layer.133 2.942965150? 8.8060858 >? >? >? >? ??? layer.134 2.974468350 17.5606266 >? >? >? >? ??? layer.135 3.008983612 17.3088605 >? >? >? >? ??? layer.136 3.040015221 13.4500543 >? >? >? >? ??? layer.137 3.072668672 14.6377884 >? >? >? >? ??? layer.138 3.105982423? 8.0798552dput(onepctCO2MEDIAN) >? >? > dput(onepctCO2MEDIAN) >? >? >? >? ??? structure(list(x = c(0, 0.00679444684647024, > 0.014288058038801, >? >? >? >? ??? 0.0220879195258021, >? >? > 0.0307973567396402,0.0384510718286037,0.0480879042297602, >? >? >? >? ??? 0.0586777292191982, 0.0692614056169987, >? >? > 0.080524530261755,0.0927602462470531, >? >? >? >? ??? 0.103789608925581, 0.116953168064356, 0.129253298044205, >? >? > 0.141710050404072, >? >? >? >? ??? 0.156002052128315, 0.170648172497749, 0.185318425297737, >? >? > 0.199463054537773, >? >? >? >? ??? 0.21351333707571, 0.22883927077055, 0.246981292963028, >? >? > 0.263012766838074, >? >? >? >? ??? 0.278505563735962, 0.29365836083889, 0.310747265815735, >? >? > 0.325990349054337, >? >? >? >? ??? 0.342517539858818, 0.362751632928848, 0.380199536681175, >? >? > 0.39499294757843, >? >? >? >? ??? 0.414373397827148, 0.430690214037895, 0.449738144874573, >? >? > 0.470167458057404, >? >? >? >? ??? 0.489019870758057, 0.507242470979691, 0.524314284324646, >? >? > 0.543750524520874, >? >? >? >? ??? 0.56423419713974, 0.583679616451263, 0.601459443569183, >? >? > 0.619924664497375, >? >? >? >? ??? 0.639932006597519, 0.661347180604935, 0.684117317199707, >? >? > 0.704829752445221, >? >? >? >? ??? 0.725045770406723, 0.745165824890137, 0.765016138553619, >? >? > 0.783461511135101, >? >? >? >? ??? 0.806382924318314, 0.829241335391998, 0.84992441534996, >? >? > 0.871352434158325, >? >? >? >? ??? 0.893632233142853, 0.916052132844925, 0.938579469919205, >? >? > 0.959907650947571, >? >? >? >? ??? 0.981643587350845, 1.00411677360535, 1.02836346626282, >? >? > 1.05400913953781, >? >? >? >? ??? 1.07244080305099, 1.09445780515671, 1.12317627668381, >? >? > 1.14943087100983, >? >? >? >? ??? 1.17091292142868, 1.19674307107925, 1.21862590312958, >? >? > 1.24186837673187, >? >? >? >? ??? 1.26794159412384, 1.2907087802887, 1.31322228908539, >? >? > 1.33904588222504, >? >? >? >? ??? 1.36280345916748, 1.38445019721985, 1.40972030162811, >? >? > 1.43585115671158, >? >? >? >? ??? 1.45559221506119, 1.47949534654617, 1.50605195760727, >? >? > 1.52572846412659, >? >? >? >? ??? 1.5493620634079, 1.5734406709671, 1.60027873516083, >? >? > 1.62387949228287, >? >? >? >? ??? 1.65002930164337, 1.67236232757568, 1.70022112131119, >? >? > 1.72479337453842, >? >? >? >? ??? 1.75107055902481, 1.77802211046219, 1.80302208662033, >? >? > 1.83066886663437, >? >? >? >? ??? 1.85573691129684, 1.88261502981186, 1.90921849012375, >? >? > 1.93813002109528, >? >? >? >? ??? 1.96372759342194, 1.99327194690704, 2.02254813909531, >? >? > 2.05067992210388, >? >? >? >? ??? 2.07806444168091, 2.1041134595871, 2.13359761238098, >? >? > 2.16402626037598, >? >? >? >? ??? 2.19485282897949, 2.2242579460144, 2.25219464302063, >? >? > 2.27733504772186, >? >? >? >? ??? 2.30405831336975, 2.33093023300171, 2.35702276229858, >? >? > 2.38648927211761, >? >? >? >? ??? 2.41750395298004, 2.44852435588837, 2.47869896888733, >? >? > 2.51017570495605, >? >? >? >? ??? 2.53969788551331, 2.567915558815, 2.59746325016022, >? >? > 2.62751877307892, >? >? >? >? ??? 2.65875923633575, 2.69240152835846, 2.72190320491791, >? >? > 2.75302135944366, >? >? >? >? ??? 2.78631341457367, 2.8195641040802, 2.85082316398621, >? >? > 2.88039410114288, >? >? >? >? ??? 2.91139125823975, 2.94296514987946, 2.97446835041046, >? >? > 3.00898361206055, >? >? >? >? ??? 3.04001522064209, 3.07266867160797, 3.10598242282867), y = > c(0, >? >? >? >? ??? 4.90024901723162, 0.160799993152722, 6.63491326258641, >? >? > -1.24295055804536, >? >? >? >? ??? 1.56433744259162, -2.26590352245208, 2.20700446463354, >? >? > -2.36770012911069, >? >? >? >? ??? -1.09135061899174, 0.409993989292701, -0.125972681525582, >? >? > -2.41382533818026, >? >? >? >? ??? 7.08902570153028, -0.759353880417294, 0.0454415959640926, >? >? > -1.53496826259972, >? >? >? >? ??? 6.55242014096194, -0.831256280861552, -2.50991825629084, >? >? > 0.136596820654013, >? >? >? >? ??? -1.37198445498419, -0.871298832596736, 0.663258363762466, >? >? > 0.793803634291308, >? >? >? >? ??? 3.48806373666998, -4.46122081238949, 0.0871733966938564, >? >? > -1.41715777257774, >? >? >? >? ??? -0.995650815648318, 0.32155262317503, 3.14038657369241, >? >? > -0.737609879885404, >? >? >? >? ??? -2.48605406511292, -3.423585843908, 0.482474753780281, >? >? > -0.978538630093809, >? >? >? >? ??? 8.53596837794201, 5.48447420320695, 3.21493665820644, >? >? > 3.91689160157513, >? >? >? >? ??? 4.49070195980797, 6.54104103157039, 4.80686500146557, >? >? > 8.15101701282067, >? >? >? >? ??? 0.26974132191657, -0.180750068063062, 9.71812491230244, >? >? > 1.54064657400204, >? >? >? >? ??? -1.64760408795688, 4.80246028991894, 4.04215159914344, >? >? > 9.37565121768513, >? >? >? >? ??? 5.33050496938428, 7.54458026088508, 6.46795470819342, >? >? > 2.80960651433971, >? >? >? >? ??? 5.39216613235986, 7.20436888038562, 3.3350806460997, >? >? > 8.86907069895943, >? >? >? >? ??? 1.78612988613659, 6.25550382050395, 7.60792364896564, >? >? > 7.68714830528144, >? >? >? >? ??? 4.77877638957615, 12.7110501777314, -0.715628443181046, >? >? > 1.64908991824022, >? >? >? >? ??? 3.03630240714679, 4.29747688442346, 1.95437780501881, >? >? > 3.99869636910933, >? >? >? >? ??? 4.51794724689848, 0.933790484492299, 3.30507700050003, >? >? > 3.5422970157433, >? >? >? >? ??? 5.99736597322524, 0.508186860060022, 7.96616300581067, >? >? > 9.94604963036295, >? >? >? >? ??? 3.79083717222623, 2.57358468532258, 10.1404974171776, >? >? > 13.7408303595752, >? >? >? >? ??? 0.933577123801399, 9.75887417074129, 1.27693947132921, >? >? > 13.4970905965787, >? >? >? >? ??? 10.2087501765735, 1.68112753028756, 6.1178991508927, >? >? > -0.156762622680077, >? >? >? >? ??? 3.82374791691426, 4.43314678736265, 5.97907067167507, >? >? > 11.3104332518482, >? >? >? >? ??? 8.21426074201525, 15.320967360602, 5.81782169471483, >? >? > 9.6004907412354, >? >? >? >? ??? 3.40636455909704, 4.73750103921864, 3.0133019468806, >? >? > 5.56595224859066, >? >? >? >? ??? 12.0346332527215, -0.40283199827104, 10.5996779538754, >? >? > 5.44795836991128, >? >? >? >? ??? 4.70523736412729, 14.096201892183, 5.71490161813391, >? >? > 3.77800720810782, >? >? >? >? ??? 4.41206200639436, 4.18660847858423, 6.90788020044911, >? >? > 2.78257393345915, >? >? >? >? ??? 7.61717857379431, 10.2410602647684, 8.18207106836167, >? >? > 4.82754943871433, >? >? >? >? ??? 19.1624882857155, 16.0677109398509, 12.589708067017, >? >? > 9.29079879799404, >? >? >? >? ??? 7.42625019725314, 9.39025179806185, 12.6193550331438, >? >? > 11.1121039747257, >? >? >? >? ??? 15.7907099734986, 10.7425286789233, 7.79714300307344, >? >? > 8.80608578166101, >? >? >? >? ??? 17.5606266346039, 17.3088604929222, 13.4500543478523, >? >? > 14.6377884248645, >? >? >? >? ??? 8.07985518296064)), class = "data.frame", row.names >? > c("layer.1", >? >? >? >? ??? "layer.2", "layer.3", "layer.4", "layer.5", "layer.6", > "layer.7", >? >? >? >? ??? "layer.8", "layer.9", "layer.10", "layer.11", "layer.12", >? >? > "layer.13", >? >? >? >? ??? "layer.14", "layer.15", "layer.16", "layer.17", "layer.18", >? >? > "layer.19", >? >? >? >? ??? "layer.20", "layer.21", "layer.22", "layer.23", "layer.24", >? >? > "layer.25", >? >? >? >? ??? "layer.26", "layer.27", "layer.28", "layer.29", "layer.30", >? >? > "layer.31", >? >? >? >? ??? "layer.32", "layer.33", "layer.34", "layer.35", "layer.36", >? >? > "layer.37", >? >? >? >? ??? "layer.38", "layer.39", "layer.40", "layer.41", "layer.42", >? >? > "layer.43", >? >? >? >? ??? "layer.44", "layer.45", "layer.46", "layer.47", "layer.48", >? >? > "layer.49", >? >? >? >? ??? "layer.50", "layer.51", "layer.52", "layer.53", "layer.54", >? >? > "layer.55", >? >? >? >? ??? "layer.56", "layer.57", "layer.58", "layer.59", "layer.60", >? >? > "layer.61", >? >? >? >? ??? "layer.62", "layer.63", "layer.64", "layer.65", "layer.66", >? >? > "layer.67", >? >? >? >? ??? "layer.68", "layer.69", "layer.70", "layer.71", "layer.72", >? >? > "layer.73", >? >? >? >? ??? "layer.74", "layer.75", "layer.76", "layer.77", "layer.78", >? >? > "layer.79", >? >? >? >? ??? "layer.80", "layer.81", "layer.82", "layer.83", "layer.84", >? >? > "layer.85", >? >? >? >? ??? "layer.86", "layer.87", "layer.88", "layer.89", "layer.90", >? >? > "layer.91", >? >? >? >? ??? "layer.92", "layer.93", "layer.94", "layer.95", "layer.96", >? >? > "layer.97", >? >? >? >? ??? "layer.98", "layer.99", "layer.100", "layer.101", "layer.102", >? >? >? >? ??? "layer.103", "layer.104", "layer.105", "layer.106", > "layer.107", >? >? >? >? ??? "layer.108", "layer.109", "layer.110", "layer.111", > "layer.112", >? >? >? >? ??? "layer.113", "layer.114", "layer.115", "layer.116", > "layer.117", >? >? >? >? ??? "layer.118", "layer.119", "layer.120", "layer.121", > "layer.122", >? >? >? >? ??? "layer.123", "layer.124", "layer.125", "layer.126", > "layer.127", >? >? >? >? ??? "layer.128", "layer.129", "layer.130", "layer.131", > "layer.132", >? >? >? >? ??? "layer.133", "layer.134", "layer.135", "layer.136", > "layer.137", >? >? >? >? ??? "layer.138")) >? >? >? > I started with the following to generate the first regression line >? >? > and scatter plot:??? lm<-ggplot(onepctCO2MEDIAN) + >? >? >? >? ??? geom_jitter(aes(RCP1pctCO2cumulativeMedian[1:138], > departurea), >? >? >? >? ??? colour="blue") + >? > geom_smooth(aes(RCP1pctCO2cumulativeMedian[1:138], >? >? >? >? ??? departurea), method=lm) >? >? >? > But I receive this error:? ??Warning message: >? >? >? >? ??? Computation failed in `stat_smooth()`: >? >? >? >? ??? 'what' must be a function or character string >? >? >? > A blue scatter plot is successfully generated, but the problem is >? >? > that the regression line does not appear, presumably related to the >? >? > above warning. >? >? >? > Is there a reason for this? I would appreciate any assistance! >? >? >? > ??? [[alternative HTML version deleted]] >? >? > >? >? >? > >? >? >? > ______________________________________________ >? >? >? > R-help at r-project.org <mailto:R-help at r-project.org> > <mailto:R-help at r-project.org <mailto:R-help at r-project.org>> mailing list -- >? > To UNSUBSCRIBE and more, see >? >? >? > https://stat.ethz.ch/mailman/listinfo/r-help >? >? >? > PLEASE do read the posting guide >? >? > http://www.R-project.org/posting-guide.html >? >? >? > and provide commented, minimal, self-contained, reproducible code. >? >? > >? >? >? >[[alternative HTML version deleted]]
Hello, Try this. values_to_plot <- c("onepctCO2MEDIAN", "RCP4.5MEDIAN", "RCP8.5MEDIAN") sub_df <- subset(NewestdataUltra, L1 %in% values_to_plot) ggplot(sub_df, aes(x, value, colour = L1)) + geom_point() + scale_color_manual(values = c("green", "red", "blue")) + geom_smooth(method = lm) If you have more L1 values to plot, add more colors. The number of colors must be equal to length(values_to_plot) Hope this helps, Rui Barradas ?s 17:49 de 06/06/19, rain1290 at aim.com escreveu:> Hi Rui, NewestdataUltra looks like this (Note that "HistoricalMEDIAN" is > hidden, but it follows "RCP8.5MEDIAN" listing the same way): x variable > value L1 1 0.000000000 y 0.00000000 onepctCO2MEDIAN 2 0.006794447 y > 4.90024902 onepctCO2MEDIAN 3 0.014288058 y 0.16079999 onepctCO2MEDIAN 4 > 0.022087920 y 6.63491326 onepctCO2MEDIAN 5 0.030797357 y -1.24295056 > onepctCO2MEDIAN 6 0.038451072 y 1.56433744 onepctCO2MEDIAN 7 0.048087904 > y -2.26590352 onepctCO2MEDIAN 8 0.058677729 y 2.20700446 onepctCO2MEDIAN > 9 0.069261406 y -2.36770013 onepctCO2MEDIAN 10 0.080524530 y -1.09135062 > onepctCO2MEDIAN 11 0.092760246 y 0.40999399 onepctCO2MEDIAN 12 > 0.103789609 y -0.12597268 onepctCO2MEDIAN 13 0.116953168 y -2.41382534 > onepctCO2MEDIAN 14 0.129253298 y 7.08902570 onepctCO2MEDIAN 15 > 0.141710050 y -0.75935388 onepctCO2MEDIAN 16 0.156002052 y 0.04544160 > onepctCO2MEDIAN 17 0.170648172 y -1.53496826 onepctCO2MEDIAN 18 > 0.185318425 y 6.55242014 onepctCO2MEDIAN 19 0.199463055 y -0.83125628 > onepctCO2MEDIAN 20 0.213513337 y -2.50991826 onepctCO2MEDIAN 21 > 0.228839271 y 0.13659682 onepctCO2MEDIAN 22 0.246981293 y -1.37198445 > onepctCO2MEDIAN 23 0.263012767 y -0.87129883 onepctCO2MEDIAN 24 > 0.278505564 y 0.66325836 onepctCO2MEDIAN 25 0.293658361 y 0.79380363 > onepctCO2MEDIAN 26 0.310747266 y 3.48806374 onepctCO2MEDIAN 27 > 0.325990349 y -4.46122081 onepctCO2MEDIAN 28 0.342517540 y 0.08717340 > onepctCO2MEDIAN 29 0.362751633 y -1.41715777 onepctCO2MEDIAN 30 > 0.380199537 y -0.99565082 onepctCO2MEDIAN 31 0.394992948 y 0.32155262 > onepctCO2MEDIAN 32 0.414373398 y 3.14038657 onepctCO2MEDIAN 33 > 0.430690214 y -0.73760988 onepctCO2MEDIAN 34 0.449738145 y -2.48605407 > onepctCO2MEDIAN 35 0.470167458 y -3.42358584 onepctCO2MEDIAN 36 > 0.489019871 y 0.48247475 onepctCO2MEDIAN 37 0.507242471 y -0.97853863 > onepctCO2MEDIAN 38 0.524314284 y 8.53596838 onepctCO2MEDIAN 39 > 0.543750525 y 5.48447420 onepctCO2MEDIAN 40 0.564234197 y 3.21493666 > onepctCO2MEDIAN 41 0.583679616 y 3.91689160 onepctCO2MEDIAN 42 > 0.601459444 y 4.49070196 onepctCO2MEDIAN 43 0.619924664 y 6.54104103 > onepctCO2MEDIAN 44 0.639932007 y 4.80686500 onepctCO2MEDIAN 45 > 0.661347181 y 8.15101701 onepctCO2MEDIAN 46 0.684117317 y 0.26974132 > onepctCO2MEDIAN 47 0.704829752 y -0.18075007 onepctCO2MEDIAN 48 > 0.725045770 y 9.71812491 onepctCO2MEDIAN 49 0.745165825 y 1.54064657 > onepctCO2MEDIAN 50 0.765016139 y -1.64760409 onepctCO2MEDIAN 51 > 0.783461511 y 4.80246029 onepctCO2MEDIAN 52 0.806382924 y 4.04215160 > onepctCO2MEDIAN 53 0.829241335 y 9.37565122 onepctCO2MEDIAN 54 > 0.849924415 y 5.33050497 onepctCO2MEDIAN 55 0.871352434 y 7.54458026 > onepctCO2MEDIAN 56 0.893632233 y 6.46795471 onepctCO2MEDIAN 57 > 0.916052133 y 2.80960651 onepctCO2MEDIAN 58 0.938579470 y 5.39216613 > onepctCO2MEDIAN 59 0.959907651 y 7.20436888 onepctCO2MEDIAN 60 > 0.981643587 y 3.33508065 onepctCO2MEDIAN 61 1.004116774 y 8.86907070 > onepctCO2MEDIAN 62 1.028363466 y 1.78612989 onepctCO2MEDIAN 63 > 1.054009140 y 6.25550382 onepctCO2MEDIAN 64 1.072440803 y 7.60792365 > onepctCO2MEDIAN 65 1.094457805 y 7.68714831 onepctCO2MEDIAN 66 > 1.123176277 y 4.77877639 onepctCO2MEDIAN 67 1.149430871 y 12.71105018 > onepctCO2MEDIAN 68 1.170912921 y -0.71562844 onepctCO2MEDIAN 69 > 1.196743071 y 1.64908992 onepctCO2MEDIAN 70 1.218625903 y 3.03630241 > onepctCO2MEDIAN 71 1.241868377 y 4.29747688 onepctCO2MEDIAN 72 > 1.267941594 y 1.95437781 onepctCO2MEDIAN 73 1.290708780 y 3.99869637 > onepctCO2MEDIAN 74 1.313222289 y 4.51794725 onepctCO2MEDIAN 75 > 1.339045882 y 0.93379048 onepctCO2MEDIAN 76 1.362803459 y 3.30507700 > onepctCO2MEDIAN 77 1.384450197 y 3.54229702 onepctCO2MEDIAN 78 > 1.409720302 y 5.99736597 onepctCO2MEDIAN 79 1.435851157 y 0.50818686 > onepctCO2MEDIAN 80 1.455592215 y 7.96616301 onepctCO2MEDIAN 81 > 1.479495347 y 9.94604963 onepctCO2MEDIAN 82 1.506051958 y 3.79083717 > onepctCO2MEDIAN 83 1.525728464 y 2.57358469 onepctCO2MEDIAN 84 > 1.549362063 y 10.14049742 onepctCO2MEDIAN 85 1.573440671 y 13.74083036 > onepctCO2MEDIAN 86 1.600278735 y 0.93357712 onepctCO2MEDIAN 87 > 1.623879492 y 9.75887417 onepctCO2MEDIAN 88 1.650029302 y 1.27693947 > onepctCO2MEDIAN 89 1.672362328 y 13.49709060 onepctCO2MEDIAN 90 > 1.700221121 y 10.20875018 onepctCO2MEDIAN 91 1.724793375 y 1.68112753 > onepctCO2MEDIAN 92 1.751070559 y 6.11789915 onepctCO2MEDIAN 93 > 1.778022110 y -0.15676262 onepctCO2MEDIAN 94 1.803022087 y 3.82374792 > onepctCO2MEDIAN 95 1.830668867 y 4.43314679 onepctCO2MEDIAN 96 > 1.855736911 y 5.97907067 onepctCO2MEDIAN 97 1.882615030 y 11.31043325 > onepctCO2MEDIAN 98 1.909218490 y 8.21426074 onepctCO2MEDIAN 99 > 1.938130021 y 15.32096736 onepctCO2MEDIAN 100 1.963727593 y 5.81782169 > onepctCO2MEDIAN 101 1.993271947 y 9.60049074 onepctCO2MEDIAN 102 > 2.022548139 y 3.40636456 onepctCO2MEDIAN 103 2.050679922 y 4.73750104 > onepctCO2MEDIAN 104 2.078064442 y 3.01330195 onepctCO2MEDIAN 105 > 2.104113460 y 5.56595225 onepctCO2MEDIAN 106 2.133597612 y 12.03463325 > onepctCO2MEDIAN 107 2.164026260 y -0.40283200 onepctCO2MEDIAN 108 > 2.194852829 y 10.59967795 onepctCO2MEDIAN 109 2.224257946 y 5.44795837 > onepctCO2MEDIAN 110 2.252194643 y 4.70523736 onepctCO2MEDIAN 111 > 2.277335048 y 14.09620189 onepctCO2MEDIAN 112 2.304058313 y 5.71490162 > onepctCO2MEDIAN 113 2.330930233 y 3.77800721 onepctCO2MEDIAN 114 > 2.357022762 y 4.41206201 onepctCO2MEDIAN 115 2.386489272 y 4.18660848 > onepctCO2MEDIAN 116 2.417503953 y 6.90788020 onepctCO2MEDIAN 117 > 2.448524356 y 2.78257393 onepctCO2MEDIAN 118 2.478698969 y 7.61717857 > onepctCO2MEDIAN 119 2.510175705 y 10.24106026 onepctCO2MEDIAN 120 > 2.539697886 y 8.18207107 onepctCO2MEDIAN 121 2.567915559 y 4.82754944 > onepctCO2MEDIAN 122 2.597463250 y 19.16248829 onepctCO2MEDIAN 123 > 2.627518773 y 16.06771094 onepctCO2MEDIAN 124 2.658759236 y 12.58970807 > onepctCO2MEDIAN 125 2.692401528 y 9.29079880 onepctCO2MEDIAN 126 > 2.721903205 y 7.42625020 onepctCO2MEDIAN 127 2.753021359 y 9.39025180 > onepctCO2MEDIAN 128 2.786313415 y 12.61935503 onepctCO2MEDIAN 129 > 2.819564104 y 11.11210397 onepctCO2MEDIAN 130 2.850823164 y 15.79070997 > onepctCO2MEDIAN 131 2.880394101 y 10.74252868 onepctCO2MEDIAN 132 > 2.911391258 y 7.79714300 onepctCO2MEDIAN 133 2.942965150 y 8.80608578 > onepctCO2MEDIAN 134 2.974468350 y 17.56062663 onepctCO2MEDIAN 135 > 3.008983612 y 17.30886049 onepctCO2MEDIAN 136 3.040015221 y 13.45005435 > onepctCO2MEDIAN 137 3.072668672 y 14.63778842 onepctCO2MEDIAN 138 > 3.105982423 y 8.07985518 onepctCO2MEDIAN 139 0.467429527 y -1.55704023 > RCP4.5MEDIAN 140 0.478266196 y -3.19367515 RCP4.5MEDIAN 141 0.489205229 > y -2.44452679 RCP4.5MEDIAN 142 0.500039143 y 0.87504367 RCP4.5MEDIAN 143 > 0.511021115 y -0.39185002 RCP4.5MEDIAN 144 0.519874968 y -4.18935168 > RCP4.5MEDIAN 145 0.528508358 y -3.64179524 RCP4.5MEDIAN 146 0.537377594 > y -2.58167128 RCP4.5MEDIAN 147 0.546194211 y 2.20583694 RCP4.5MEDIAN 148 > 0.554720591 y -8.57764597 RCP4.5MEDIAN 149 0.563289814 y 2.88442536 > RCP4.5MEDIAN 150 0.572032790 y -3.90829882 RCP4.5MEDIAN 151 0.580939066 > y -3.39269048 RCP4.5MEDIAN 152 0.590921065 y -4.60849867 RCP4.5MEDIAN > 153 0.601575326 y -1.62572657 RCP4.5MEDIAN 154 0.612425555 y 1.14198465 > RCP4.5MEDIAN 155 0.623773319 y -3.38454122 RCP4.5MEDIAN 156 0.635363359 > y 2.43414265 RCP4.5MEDIAN 157 0.646722666 y 3.30007615 RCP4.5MEDIAN 158 > 0.658285673 y -0.79555442 RCP4.5MEDIAN 159 0.670250852 y -2.05220500 > RCP4.5MEDIAN 160 0.681702690 y -5.56808946 RCP4.5MEDIAN 161 0.693531145 > y 2.24168605 RCP4.5MEDIAN 162 0.706016061 y -4.83673351 RCP4.5MEDIAN 163 > 0.718231249 y 0.40086819 RCP4.5MEDIAN 164 0.730190911 y -1.98026992 > RCP4.5MEDIAN 165 0.741269845 y 0.39963115 RCP4.5MEDIAN 166 0.751000321 y > -0.83241777 RCP4.5MEDIAN 167 0.760886972 y -1.66101404 RCP4.5MEDIAN 168 > 0.771137164 y -1.05452982 RCP4.5MEDIAN 169 0.781856383 y -1.18338156 > RCP4.5MEDIAN 170 0.792607542 y 0.22722653 RCP4.5MEDIAN 171 0.803724128 y > -1.90642564 RCP4.5MEDIAN 172 0.815066246 y 0.75010550 RCP4.5MEDIAN 173 > 0.826027437 y -1.31108646 RCP4.5MEDIAN 174 0.836766732 y 1.05961515 > RCP4.5MEDIAN 175 0.847553312 y -2.06588010 RCP4.5MEDIAN 176 0.858331452 > y 8.53403315 RCP4.5MEDIAN 177 0.869154422 y 0.09979751 RCP4.5MEDIAN 178 > 0.879572539 y -2.50854353 RCP4.5MEDIAN 179 0.889426601 y 5.29550783 > RCP4.5MEDIAN 180 0.899009805 y 2.02909481 RCP4.5MEDIAN 181 0.908289566 y > 2.66922982 RCP4.5MEDIAN 182 0.917284978 y -4.17757196 RCP4.5MEDIAN 183 > 0.926128960 y 3.40202916 RCP4.5MEDIAN 184 0.934752874 y -1.92292218 > RCP4.5MEDIAN 185 0.943010943 y 6.36969150 RCP4.5MEDIAN 186 0.950999217 y > 1.86490308 RCP4.5MEDIAN 187 0.958795701 y 8.32126161 RCP4.5MEDIAN 188 > 0.966310396 y 10.15048356 RCP4.5MEDIAN 189 0.973635493 y 6.68925964 > RCP4.5MEDIAN 190 0.980834088 y -1.01615369 RCP4.5MEDIAN 191 0.987694790 > y 0.20892853 RCP4.5MEDIAN 192 0.994548581 y -1.52787222 RCP4.5MEDIAN 193 > 1.001274595 y -0.72374597 RCP4.5MEDIAN 194 1.007810612 y 2.26062309 > RCP4.5MEDIAN 195 1.014270389 y -2.40270340 RCP4.5MEDIAN 196 1.022719711 > y -1.94548262 RCP4.5MEDIAN 197 1.032070810 y -1.13053235 RCP4.5MEDIAN > 198 1.041118812 y 0.56107969 RCP4.5MEDIAN 199 1.050189571 y 3.27941835 > RCP4.5MEDIAN 200 1.059380475 y 3.01333588 RCP4.5MEDIAN 201 1.067877585 y > 4.87457336 RCP4.5MEDIAN 202 1.076078766 y 1.02457895 RCP4.5MEDIAN 203 > 1.084707357 y 4.49174869 RCP4.5MEDIAN 204 1.093223180 y 8.24629303 > RCP4.5MEDIAN 205 1.101414382 y -0.03364132 RCP4.5MEDIAN 206 1.108886304 > y 9.12509848 RCP4.5MEDIAN 207 1.115482896 y 1.74254621 RCP4.5MEDIAN 208 > 1.121856558 y 2.27004536 RCP4.5MEDIAN 209 1.127809421 y -0.65627179 > RCP4.5MEDIAN 210 1.133265961 y 12.02566969 RCP4.5MEDIAN 211 1.138549712 > y -1.04260843 RCP4.5MEDIAN 212 1.143910237 y -6.47611327 RCP4.5MEDIAN > 213 1.149437787 y 8.88410567 RCP4.5MEDIAN 214 1.154488347 y -4.24916247 > RCP4.5MEDIAN 215 1.159872903 y 7.90741918 RCP4.5MEDIAN 216 1.165477487 y > -3.91386711 RCP4.5MEDIAN 217 1.171103424 y 1.02370701 RCP4.5MEDIAN 218 > 1.177498256 y -3.71206616 RCP4.5MEDIAN 219 1.184003888 y -1.05694182 > RCP4.5MEDIAN 220 1.190395856 y 1.10501459 RCP4.5MEDIAN 221 1.197284280 y > 2.67668639 RCP4.5MEDIAN 222 1.204590551 y 2.21693031 RCP4.5MEDIAN 223 > 1.210807614 y 2.90252830 RCP4.5MEDIAN 224 1.216470664 y 2.75093766 > RCP4.5MEDIAN 225 1.221914148 y -0.73815245 RCP4.5MEDIAN 226 1.227580480 > y 3.58554626 RCP4.5MEDIAN 227 1.233317788 y 10.89961658 RCP4.5MEDIAN 228 > 1.238093406 y 3.23374387 RCP4.5MEDIAN 229 0.466622908 y -1.92366466 > RCP8.5MEDIAN 230 0.474211509 y 4.09292949 RCP8.5MEDIAN 231 0.480383051 y > -0.84736312 RCP8.5MEDIAN 232 0.486304903 y -0.80597889 RCP8.5MEDIAN 233 > 0.492151615 y -0.50244413 RCP8.5MEDIAN 234 0.499312643 y 3.07785701 > RCP8.5MEDIAN 235 0.508859905 y -6.15175322 RCP8.5MEDIAN 236 0.518758845 > y -0.51590144 RCP8.5MEDIAN 237 0.528675758 y 3.33135956 RCP8.5MEDIAN 238 > 0.538928423 y 2.62280891 RCP8.5MEDIAN 239 0.549621221 y -6.90096009 > RCP8.5MEDIAN 240 0.560062840 y -3.45706029 RCP8.5MEDIAN 241 0.570860791 > y 1.36192518 RCP8.5MEDIAN 242 0.581923368 y 0.34822359 RCP8.5MEDIAN 243 > 0.592628298 y 3.06882935 RCP8.5MEDIAN 244 0.604230648 y -3.56142825 > RCP8.5MEDIAN 245 0.615975167 y 10.35932554 RCP8.5MEDIAN 246 0.627448279 > y 10.21751629 RCP8.5MEDIAN 247 0.639401050 y 3.31040335 RCP8.5MEDIAN 248 > 0.651949591 y -0.53558775 RCP8.5MEDIAN 249 0.664634427 y 2.66081860 > RCP8.5MEDIAN 250 0.677343552 y 3.21379656 RCP8.5MEDIAN [ reached 'max' / > getOption("max.print") -- omitted 212 rows ] > > > If I wanted scatter plots and regression lines of onepctCO2MEDIAN, > RCP4.5MEDIAN and RCP8.5MEDIAN, would I do something like this? : > ggplot(subset(NewestdataUltra, L1 != 'onepctCO2MEDIAN'), aes(x, value, > colour = L1)) + geom_point() + scale_color_manual(values =c("green", > "blue" "red", "black")) + geom_smooth(method = lm, se=FALSE) > **//___^ > Thanks, > > -----Original Message----- > From: Rui Barradas <ruipbarradas at sapo.pt> > To: rain1290 <rain1290 at aim.com>; r-help <r-help at R-project.org> > Sent: Thu, Jun 6, 2019 11:53 am > Subject: Re: [R] Plotting more than one regression line in ggplot > > Hello, > > It's impossible to say without seeing the data. > > What is the return value of > > df_tmp <- subset(NewestdataUltra, L1 != 'onepctCO2MEDIAN') > unique(df_tmp$L1) > > The number of colors must be the same as > > length(unique(df_tmp$L1)) > > > Hope this helps, > > Rui Barradas > > ?s 16:49 de 06/06/19, rain1290 at aim.com <mailto:rain1290 at aim.com> escreveu: > > Hi Rui, > > > > Yes, you are right. It should be this, but I tried with only 3 colors, > > as you suggested: > > > > ggplot(subset(NewestdataUltra, L1 != 'onepctCO2MEDIAN'), aes(x, value, > > colour = L1)) + geom_point() + scale_color_manual(values =c("green", > > "blue" "red")) + geom_smooth(method = lm, se=FALSE) > > > > **//___^ > > **//___^I still end up with the same error, however, when I specify only > > 3 colors. Why could this be? > > > > > > -----Original Message----- > > From: Rui Barradas <ruipbarradas at sapo.pt <mailto:ruipbarradas at sapo.pt>> > > To: rain1290 <rain1290 at aim.com <mailto:rain1290 at aim.com>>; r-help > <r-help at R-project.org <mailto:r-help at R-project.org>> > > Sent: Thu, Jun 6, 2019 11:18 am > > Subject: Re: [R] Plotting more than one regression line in ggplot > > > > Hello, > > > > 1) In the text you say your dataset is named NewestdataUltra but in the > > ggplot instruction it's Newestdata. One of these is wrong. > > > > 2) Is it onepctCO2MEDIAN or RCPonepctCO2MEDIAN? > > > > 3) You are filtering out the value in point ) above. So you only plot 3 > > regression lines, you don't need 4 colors. > > > > > > Hope this helps, > > > > Rui Barradas > > > > ?s 15:35 de 06/06/19, rain1290 at aim.com <mailto:rain1290 at aim.com> > <mailto:rain1290 at aim.com <mailto:rain1290 at aim.com>> escreveu: > >? > Hi Rui (and everyone), > >? > > >? > > >? > Thank you for this! Yes, this did work fine, as I can see my scatter > >? > plots and regression lines on the same plot, along with the > appropriate > >? > coloring scheme! :) > >? > > >? > Just one last question concerning this - I melted other dataframes > into > >? > my new "NewestdataUltra". I now have 4 objects listed in there in this > >? > order (starting from the top of the list): "onepctCO2MEDIAN", > >? > "RCP4.5MEDIAN", RCP8.5MEDIAN", and "HistoricalMEDIAN". I tried > plotting > >? > colored scattered plots and regression lines for these in this manner: > >? > > >? > ggplot(subset(Newestdata, L1 != 'RCPonepctCO2MEDIAN'), aes(x, value, > >? > colour = L1)) + geom_point() + scale_color_manual(values =c("green", > >? > "blue" "red", "black")) + geom_smooth(method = lm, se=FALSE) > >? > > >? > However, I received this error: > >? > > >? > Error: unexpected string constant in > "ggplot(subset(NewestdataUltra, L1 > >? > != 'RCPonepctCO2MEDIAN'), aes(x, value, colour = L1)) + geom_point() + > >? > scale_color_manual(values =c("green", "blue" "red"" > >? > > >? > **//___^ > >? > > >? > Why would this error appear?? I think that I assigned the colors > >? > correctly to each of the four objects in question, so why would this > > occur? > >? > > >? > Thank you, once again! > >? > > >? > -----Original Message----- > >? > From: Rui Barradas <ruipbarradas at sapo.pt > <mailto:ruipbarradas at sapo.pt> <mailto:ruipbarradas at sapo.pt > <mailto:ruipbarradas at sapo.pt>>> > >? > To: rain1290 <rain1290 at aim.com <mailto:rain1290 at aim.com> > <mailto:rain1290 at aim.com <mailto:rain1290 at aim.com>>>; r-help > > <r-help at R-project.org <mailto:r-help at R-project.org> > <mailto:r-help at R-project.org <mailto:r-help at R-project.org>>> > >? > Sent: Thu, Jun 6, 2019 6:52 am > >? > Subject: Re: [R] Plotting more than one regression line in ggplot > >? > > >? > Hello, > >? > > >? > You are confusing some of the values of L1 with L1 itself. > >? > If you just want two of those values in your plot, > "onepctCO2MEDIAN" and > >? > "RCP8.5MEDIAN", you need to subset the data filtering out the rows > with > >? > L1 == "RCP4.5MEDIAN". > >? > > >? > And please forget geom_jitter, it is completely inappropriate for the > >? > type of scatter plot you are trying to graph. You jitter when there is > >? > overplotting, not as a general purpose technique. > >? > > >? > Here is one way to do it. > >? > > >? > > >? > ggplot(subset(NewestdataUltra, L1 != 'RCP4.5MEDIAN'), > >? >? ? ? ? ? aes(x, value, colour = L1)) + > >? >? ? geom_point() + > >? >? ? scale_color_manual(values = c("green", "red")) + > >? >? ? geom_smooth(method = lm) > >? > > >? > > >? > Hope this helps, > >? > > >? > Rui Barradas > >? > > >? > ?s 22:37 de 05/06/19, rain1290 at aim.com <mailto:rain1290 at aim.com> > <mailto:rain1290 at aim.com <mailto:rain1290 at aim.com>> > > <mailto:rain1290 at aim.com <mailto:rain1290 at aim.com> > <mailto:rain1290 at aim.com <mailto:rain1290 at aim.com>>> escreveu: > >? >? > Hi Rui (and everyone), > >? >? > > >? >? > Thank you so much for your response! Much appreciated! > >? >? > > >? >? > What if I wanted I create several regression lines and scatter > > plots in > >? >? > the same ggplot using a "melted" dataset? I would like to create a > >? >? > scatter plot and regression line for both the objects of > >? >? > "onepctCO2MEDIAN" and "RCP8.5MEDIANThis melted dataset looks like > > this: > >? >? > > >? >? > > >? >? >? >NewestdataUltra > >? >? > > >? >? > x variable value L1 1 0.000000000 y 0.00000000 onepctCO2MEDIAN 2 > >? >? > 0.006794447 y 4.90024902 onepctCO2MEDIAN 3 0.014288058 y 0.16079999 > >? >? > onepctCO2MEDIAN 4 0.022087920 y 6.63491326 onepctCO2MEDIAN 5 > > 0.030797357 > >? >? > y -1.24295056 onepctCO2MEDIAN 6 0.038451072 y 1.56433744 > > onepctCO2MEDIAN > >? >? > 7 0.048087904 y -2.26590352 onepctCO2MEDIAN 8 0.058677729 y > 2.20700446 > >? >? > onepctCO2MEDIAN 9 0.069261406 y -2.36770013 onepctCO2MEDIAN 10 > >? >? > 0.080524530 y -1.09135062 onepctCO2MEDIAN 11 0.092760246 y > 0.40999399 > >? >? > onepctCO2MEDIAN 12 0.103789609 y -0.12597268 onepctCO2MEDIAN 13 > >? >? > 0.116953168 y -2.41382534 onepctCO2MEDIAN 14 0.129253298 y > 7.08902570 > >? >? > onepctCO2MEDIAN 15 0.141710050 y -0.75935388 onepctCO2MEDIAN 16 > >? >? > 0.156002052 y 0.04544160 onepctCO2MEDIAN 17 0.170648172 y > -1.53496826 > >? >? > onepctCO2MEDIAN 18 0.185318425 y 6.55242014 onepctCO2MEDIAN 19 > >? >? > 0.199463055 y -0.83125628 onepctCO2MEDIAN 20 0.213513337 y > -2.50991826 > >? >? > onepctCO2MEDIAN 21 0.228839271 y 0.13659682 onepctCO2MEDIAN 22 > >? >? > 0.246981293 y -1.37198445 onepctCO2MEDIAN 23 0.263012767 y > -0.87129883 > >? >? > onepctCO2MEDIAN 24 0.278505564 y 0.66325836 onepctCO2MEDIAN 25 > >? >? > 0.293658361 y 0.79380363 onepctCO2MEDIAN 26 0.310747266 y > 3.48806374 > >? >? > onepctCO2MEDIAN 27 0.325990349 y -4.46122081 onepctCO2MEDIAN 28 > >? >? > 0.342517540 y 0.08717340 onepctCO2MEDIAN 29 0.362751633 y > -1.41715777 > >? >? > onepctCO2MEDIAN 30 0.380199537 y -0.99565082 onepctCO2MEDIAN 31 > >? >? > 0.394992948 y 0.32155262 onepctCO2MEDIAN 32 0.414373398 y > 3.14038657 > >? >? > onepctCO2MEDIAN 33 0.430690214 y -0.73760988 onepctCO2MEDIAN 34 > >? >? > 0.449738145 y -2.48605407 onepctCO2MEDIAN 35 0.470167458 y > -3.42358584 > >? >? > onepctCO2MEDIAN 36 0.489019871 y 0.48247475 onepctCO2MEDIAN 37 > >? >? > 0.507242471 y -0.97853863 onepctCO2MEDIAN 38 0.524314284 y > 8.53596838 > >? >? > onepctCO2MEDIAN 39 0.543750525 y 5.48447420 onepctCO2MEDIAN 40 > >? >? > 0.564234197 y 3.21493666 onepctCO2MEDIAN 41 0.583679616 y > 3.91689160 > >? >? > onepctCO2MEDIAN 42 0.601459444 y 4.49070196 onepctCO2MEDIAN 43 > >? >? > 0.619924664 y 6.54104103 onepctCO2MEDIAN 44 0.639932007 y > 4.80686500 > >? >? > onepctCO2MEDIAN 45 0.661347181 y 8.15101701 onepctCO2MEDIAN 46 > >? >? > 0.684117317 y 0.26974132 onepctCO2MEDIAN 47 0.704829752 y > -0.18075007 > >? >? > onepctCO2MEDIAN 48 0.725045770 y 9.71812491 onepctCO2MEDIAN 49 > >? >? > 0.745165825 y 1.54064657 onepctCO2MEDIAN 50 0.765016139 y > -1.64760409 > >? >? > onepctCO2MEDIAN 51 0.783461511 y 4.80246029 onepctCO2MEDIAN 52 > >? >? > 0.806382924 y 4.04215160 onepctCO2MEDIAN 53 0.829241335 y > 9.37565122 > >? >? > onepctCO2MEDIAN 54 0.849924415 y 5.33050497 onepctCO2MEDIAN 55 > >? >? > 0.871352434 y 7.54458026 onepctCO2MEDIAN 56 0.893632233 y > 6.46795471 > >? >? > onepctCO2MEDIAN 57 0.916052133 y 2.80960651 onepctCO2MEDIAN 58 > >? >? > 0.938579470 y 5.39216613 onepctCO2MEDIAN 59 0.959907651 y > 7.20436888 > >? >? > onepctCO2MEDIAN 60 0.981643587 y 3.33508065 onepctCO2MEDIAN 61 > >? >? > 1.004116774 y 8.86907070 onepctCO2MEDIAN 62 1.028363466 y > 1.78612989 > >? >? > onepctCO2MEDIAN 63 1.054009140 y 6.25550382 onepctCO2MEDIAN 64 > >? >? > 1.072440803 y 7.60792365 onepctCO2MEDIAN 65 1.094457805 y > 7.68714831 > >? >? > onepctCO2MEDIAN 66 1.123176277 y 4.77877639 onepctCO2MEDIAN 67 > >? >? > 1.149430871 y 12.71105018 onepctCO2MEDIAN 68 1.170912921 y > -0.71562844 > >? >? > onepctCO2MEDIAN 69 1.196743071 y 1.64908992 onepctCO2MEDIAN 70 > >? >? > 1.218625903 y 3.03630241 onepctCO2MEDIAN 71 1.241868377 y > 4.29747688 > >? >? > onepctCO2MEDIAN 72 1.267941594 y 1.95437781 onepctCO2MEDIAN 73 > >? >? > 1.290708780 y 3.99869637 onepctCO2MEDIAN 74 1.313222289 y > 4.51794725 > >? >? > onepctCO2MEDIAN 75 1.339045882 y 0.93379048 onepctCO2MEDIAN 76 > >? >? > 1.362803459 y 3.30507700 onepctCO2MEDIAN 77 1.384450197 y > 3.54229702 > >? >? > onepctCO2MEDIAN 78 1.409720302 y 5.99736597 onepctCO2MEDIAN 79 > >? >? > 1.435851157 y 0.50818686 onepctCO2MEDIAN 80 1.455592215 y > 7.96616301 > >? >? > onepctCO2MEDIAN 81 1.479495347 y 9.94604963 onepctCO2MEDIAN 82 > >? >? > 1.506051958 y 3.79083717 onepctCO2MEDIAN 83 1.525728464 y > 2.57358469 > >? >? > onepctCO2MEDIAN 84 1.549362063 y 10.14049742 onepctCO2MEDIAN 85 > >? >? > 1.573440671 y 13.74083036 onepctCO2MEDIAN 86 1.600278735 y > 0.93357712 > >? >? > onepctCO2MEDIAN 87 1.623879492 y 9.75887417 onepctCO2MEDIAN 88 > >? >? > 1.650029302 y 1.27693947 onepctCO2MEDIAN 89 1.672362328 y > 13.49709060 > >? >? > onepctCO2MEDIAN 90 1.700221121 y 10.20875018 onepctCO2MEDIAN 91 > >? >? > 1.724793375 y 1.68112753 onepctCO2MEDIAN 92 1.751070559 y > 6.11789915 > >? >? > onepctCO2MEDIAN 93 1.778022110 y -0.15676262 onepctCO2MEDIAN 94 > >? >? > 1.803022087 y 3.82374792 onepctCO2MEDIAN 95 1.830668867 y > 4.43314679 > >? >? > onepctCO2MEDIAN 96 1.855736911 y 5.97907067 onepctCO2MEDIAN 97 > >? >? > 1.882615030 y 11.31043325 onepctCO2MEDIAN 98 1.909218490 y > 8.21426074 > >? >? > onepctCO2MEDIAN 99 1.938130021 y 15.32096736 onepctCO2MEDIAN 100 > >? >? > 1.963727593 y 5.81782169 onepctCO2MEDIAN 101 1.993271947 y > 9.60049074 > >? >? > onepctCO2MEDIAN 102 2.022548139 y 3.40636456 onepctCO2MEDIAN 103 > >? >? > 2.050679922 y 4.73750104 onepctCO2MEDIAN 104 2.078064442 y > 3.01330195 > >? >? > onepctCO2MEDIAN 105 2.104113460 y 5.56595225 onepctCO2MEDIAN 106 > >? >? > 2.133597612 y 12.03463325 onepctCO2MEDIAN 107 2.164026260 y > > -0.40283200 > >? >? > onepctCO2MEDIAN 108 2.194852829 y 10.59967795 onepctCO2MEDIAN 109 > >? >? > 2.224257946 y 5.44795837 onepctCO2MEDIAN 110 2.252194643 y > 4.70523736 > >? >? > onepctCO2MEDIAN 111 2.277335048 y 14.09620189 onepctCO2MEDIAN 112 > >? >? > 2.304058313 y 5.71490162 onepctCO2MEDIAN 113 2.330930233 y > 3.77800721 > >? >? > onepctCO2MEDIAN 114 2.357022762 y 4.41206201 onepctCO2MEDIAN 115 > >? >? > 2.386489272 y 4.18660848 onepctCO2MEDIAN 116 2.417503953 y > 6.90788020 > >? >? > onepctCO2MEDIAN 117 2.448524356 y 2.78257393 onepctCO2MEDIAN 118 > >? >? > 2.478698969 y 7.61717857 onepctCO2MEDIAN 119 2.510175705 y > 10.24106026 > >? >? > onepctCO2MEDIAN 120 2.539697886 y 8.18207107 onepctCO2MEDIAN 121 > >? >? > 2.567915559 y 4.82754944 onepctCO2MEDIAN 122 2.597463250 y > 19.16248829 > >? >? > onepctCO2MEDIAN 123 2.627518773 y 16.06771094 onepctCO2MEDIAN 124 > >? >? > 2.658759236 y 12.58970807 onepctCO2MEDIAN 125 2.692401528 y > 9.29079880 > >? >? > onepctCO2MEDIAN 126 2.721903205 y 7.42625020 onepctCO2MEDIAN 127 > >? >? > 2.753021359 y 9.39025180 onepctCO2MEDIAN 128 2.786313415 y > 12.61935503 > >? >? > onepctCO2MEDIAN 129 2.819564104 y 11.11210397 onepctCO2MEDIAN 130 > >? >? > 2.850823164 y 15.79070997 onepctCO2MEDIAN 131 2.880394101 y > > 10.74252868 > >? >? > onepctCO2MEDIAN 132 2.911391258 y 7.79714300 onepctCO2MEDIAN 133 > >? >? > 2.942965150 y 8.80608578 onepctCO2MEDIAN 134 2.974468350 y > 17.56062663 > >? >? > onepctCO2MEDIAN 135 3.008983612 y 17.30886049 onepctCO2MEDIAN 136 > >? >? > 3.040015221 y 13.45005435 onepctCO2MEDIAN 137 3.072668672 y > > 14.63778842 > >? >? > onepctCO2MEDIAN 138 3.105982423 y 8.07985518 onepctCO2MEDIAN 139 > >? >? > 0.467429527 y -1.55704023 RCP4.5MEDIAN 140 0.478266196 y > -3.19367515 > >? >? > RCP4.5MEDIAN 141 0.489205229 y -2.44452679 RCP4.5MEDIAN 142 > > 0.500039143 > >? >? > y 0.87504367 RCP4.5MEDIAN 143 0.511021115 y -0.39185002 > > RCP4.5MEDIAN 144 > >? >? > 0.519874968 y -4.18935168 RCP4.5MEDIAN 145 0.528508358 y > -3.64179524 > >? >? > RCP4.5MEDIAN 146 0.537377594 y -2.58167128 RCP4.5MEDIAN 147 > > 0.546194211 > >? >? > y 2.20583694 RCP4.5MEDIAN 148 0.554720591 y -8.57764597 > > RCP4.5MEDIAN 149 > >? >? > 0.563289814 y 2.88442536 RCP4.5MEDIAN 150 0.572032790 y -3.90829882 > >? >? > RCP4.5MEDIAN 151 0.580939066 y -3.39269048 RCP4.5MEDIAN 152 > > 0.590921065 > >? >? > y -4.60849867 RCP4.5MEDIAN 153 0.601575326 y -1.62572657 > RCP4.5MEDIAN > >? >? > 154 0.612425555 y 1.14198465 RCP4.5MEDIAN 155 0.623773319 y > > -3.38454122 > >? >? > RCP4.5MEDIAN 156 0.635363359 y 2.43414265 RCP4.5MEDIAN 157 > > 0.646722666 y > >? >? > 3.30007615 RCP4.5MEDIAN 158 0.658285673 y -0.79555442 > RCP4.5MEDIAN 159 > >? >? > 0.670250852 y -2.05220500 RCP4.5MEDIAN 160 0.681702690 y > -5.56808946 > >? >? > RCP4.5MEDIAN 161 0.693531145 y 2.24168605 RCP4.5MEDIAN 162 > > 0.706016061 y > >? >? > -4.83673351 RCP4.5MEDIAN 163 0.718231249 y 0.40086819 > RCP4.5MEDIAN 164 > >? >? > 0.730190911 y -1.98026992 RCP4.5MEDIAN 165 0.741269845 y 0.39963115 > >? >? > RCP4.5MEDIAN 166 0.751000321 y -0.83241777 RCP4.5MEDIAN 167 > > 0.760886972 > >? >? > y -1.66101404 RCP4.5MEDIAN 168 0.771137164 y -1.05452982 > RCP4.5MEDIAN > >? >? > 169 0.781856383 y -1.18338156 RCP4.5MEDIAN 170 0.792607542 y > > 0.22722653 > >? >? > RCP4.5MEDIAN 171 0.803724128 y -1.90642564 RCP4.5MEDIAN 172 > > 0.815066246 > >? >? > y 0.75010550 RCP4.5MEDIAN 173 0.826027437 y -1.31108646 > > RCP4.5MEDIAN 174 > >? >? > 0.836766732 y 1.05961515 RCP4.5MEDIAN 175 0.847553312 y -2.06588010 > >? >? > RCP4.5MEDIAN 176 0.858331452 y 8.53403315 RCP4.5MEDIAN 177 > > 0.869154422 y > >? >? > 0.09979751 RCP4.5MEDIAN 178 0.879572539 y -2.50854353 > RCP4.5MEDIAN 179 > >? >? > 0.889426601 y 5.29550783 RCP4.5MEDIAN 180 0.899009805 y 2.02909481 > >? >? > RCP4.5MEDIAN 181 0.908289566 y 2.66922982 RCP4.5MEDIAN 182 > > 0.917284978 y > >? >? > -4.17757196 RCP4.5MEDIAN 183 0.926128960 y 3.40202916 > RCP4.5MEDIAN 184 > >? >? > 0.934752874 y -1.92292218 RCP4.5MEDIAN 185 0.943010943 y 6.36969150 > >? >? > RCP4.5MEDIAN 186 0.950999217 y 1.86490308 RCP4.5MEDIAN 187 > > 0.958795701 y > >? >? > 8.32126161 RCP4.5MEDIAN 188 0.966310396 y 10.15048356 > RCP4.5MEDIAN 189 > >? >? > 0.973635493 y 6.68925964 RCP4.5MEDIAN 190 0.980834088 y -1.01615369 > >? >? > RCP4.5MEDIAN 191 0.987694790 y 0.20892853 RCP4.5MEDIAN 192 > > 0.994548581 y > >? >? > -1.52787222 RCP4.5MEDIAN 193 1.001274595 y -0.72374597 > > RCP4.5MEDIAN 194 > >? >? > 1.007810612 y 2.26062309 RCP4.5MEDIAN 195 1.014270389 y -2.40270340 > >? >? > RCP4.5MEDIAN 196 1.022719711 y -1.94548262 RCP4.5MEDIAN 197 > > 1.032070810 > >? >? > y -1.13053235 RCP4.5MEDIAN 198 1.041118812 y 0.56107969 > > RCP4.5MEDIAN 199 > >? >? > 1.050189571 y 3.27941835 RCP4.5MEDIAN 200 1.059380475 y 3.01333588 > >? >? > RCP4.5MEDIAN 201 1.067877585 y 4.87457336 RCP4.5MEDIAN 202 > > 1.076078766 y > >? >? > 1.02457895 RCP4.5MEDIAN 203 1.084707357 y 4.49174869 > RCP4.5MEDIAN 204 > >? >? > 1.093223180 y 8.24629303 RCP4.5MEDIAN 205 1.101414382 y -0.03364132 > >? >? > RCP4.5MEDIAN 206 1.108886304 y 9.12509848 RCP4.5MEDIAN 207 > > 1.115482896 y > >? >? > 1.74254621 RCP4.5MEDIAN 208 1.121856558 y 2.27004536 > RCP4.5MEDIAN 209 > >? >? > 1.127809421 y -0.65627179 RCP4.5MEDIAN 210 1.133265961 y > 12.02566969 > >? >? > RCP4.5MEDIAN 211 1.138549712 y -1.04260843 RCP4.5MEDIAN 212 > > 1.143910237 > >? >? > y -6.47611327 RCP4.5MEDIAN 213 1.149437787 y 8.88410567 > > RCP4.5MEDIAN 214 > >? >? > 1.154488347 y -4.24916247 RCP4.5MEDIAN 215 1.159872903 y 7.90741918 > >? >? > RCP4.5MEDIAN 216 1.165477487 y -3.91386711 RCP4.5MEDIAN 217 > > 1.171103424 > >? >? > y 1.02370701 RCP4.5MEDIAN 218 1.177498256 y -3.71206616 > > RCP4.5MEDIAN 219 > >? >? > 1.184003888 y -1.05694182 RCP4.5MEDIAN 220 1.190395856 y 1.10501459 > >? >? > RCP4.5MEDIAN 221 1.197284280 y 2.67668639 RCP4.5MEDIAN 222 > > 1.204590551 y > >? >? > 2.21693031 RCP4.5MEDIAN 223 1.210807614 y 2.90252830 > RCP4.5MEDIAN 224 > >? >? > 1.216470664 y 2.75093766 RCP4.5MEDIAN 225 1.221914148 y -0.73815245 > >? >? > RCP4.5MEDIAN 226 1.227580480 y 3.58554626 RCP4.5MEDIAN 227 > > 1.233317788 y > >? >? > 10.89961658 RCP4.5MEDIAN 228 1.238093406 y 3.23374387 > RCP4.5MEDIAN 229 > >? >? > 0.466622908 y -1.92366466 RCP8.5MEDIAN 230 0.474211509 y 4.09292949 > >? >? > RCP8.5MEDIAN 231 0.480383051 y -0.84736312 RCP8.5MEDIAN 232 > > 0.486304903 > >? >? > y -0.80597889 RCP8.5MEDIAN 233 0.492151615 y -0.50244413 > RCP8.5MEDIAN > >? >? > 234 0.499312643 y 3.07785701 RCP8.5MEDIAN 235 0.508859905 y > > -6.15175322 > >? >? > RCP8.5MEDIAN 236 0.518758845 y -0.51590144 RCP8.5MEDIAN 237 > > 0.528675758 > >? >? > y 3.33135956 RCP8.5MEDIAN 238 0.538928423 y 2.62280891 > > RCP8.5MEDIAN 239 > >? >? > 0.549621221 y -6.90096009 RCP8.5MEDIAN 240 0.560062840 y > -3.45706029 > >? >? > RCP8.5MEDIAN 241 0.570860791 y 1.36192518 RCP8.5MEDIAN 242 > > 0.581923368 y > >? >? > 0.34822359 RCP8.5MEDIAN 243 0.592628298 y 3.06882935 > RCP8.5MEDIAN 244 > >? >? > 0.604230648 y -3.56142825 RCP8.5MEDIAN 245 0.615975167 y > 10.35932554 > >? >? > RCP8.5MEDIAN 246 0.627448279 y 10.21751629 RCP8.5MEDIAN 247 > > 0.639401050 > >? >? > y 3.31040335 RCP8.5MEDIAN 248 0.651949591 y -0.53558775 > > RCP8.5MEDIAN 249 > >? >? > 0.664634427 y 2.66081860 RCP8.5MEDIAN 250 0.677343552 y 3.21379656 > >? >? > RCP8.5MEDIAN Maybe something like this? > >? >? > > >? >? > lusher<-ggplot(NewestdataULTRA) + > >? >? > geom_jitter(aes(x,value,onepctCO2MEDIAN=L1), colour="green") + > >? >? > geom_smooth(aes(x, value, onepctCO2MEDIAN=L1), method=lm) + > >? >? > geom_jitter(aes(x, value, RCP8.5MEDIAN=L1), colour="red")**//___^ > >? >? > **//___^ > >? >? > I receive this warning, however: > >? >? > > >? >? > Warning:Ignoring unknown aesthetics: onepctCO2MEDIAN > Warning:Ignoring > >? >? > unknown aesthetics: onepctCO2MEDIAN > >? >? > > >? >? > **//___^ > >? >? > Perhaps I am not assigning the columns properly? Essentially, I > just > >? >? > want create two scatter plots and two regression lines for > these two > >? >? > objects. > >? >? > > >? >? > Once again, any assistance would be greatly appreciated! > >? >? > > >? >? > -----Original Message----- > >? >? > From: Rui Barradas <ruipbarradas at sapo.pt > <mailto:ruipbarradas at sapo.pt> > > <mailto:ruipbarradas at sapo.pt <mailto:ruipbarradas at sapo.pt>> > <mailto:ruipbarradas at sapo.pt <mailto:ruipbarradas at sapo.pt> > > <mailto:ruipbarradas at sapo.pt <mailto:ruipbarradas at sapo.pt>>>> > >? >? > To: rain1290 <rain1290 at aim.com <mailto:rain1290 at aim.com> > <mailto:rain1290 at aim.com <mailto:rain1290 at aim.com>> > > <mailto:rain1290 at aim.com <mailto:rain1290 at aim.com> > <mailto:rain1290 at aim.com <mailto:rain1290 at aim.com>>>>; r-help > >? > <r-help at R-project.org <mailto:r-help at R-project.org> > <mailto:r-help at R-project.org <mailto:r-help at R-project.org>> > > <mailto:r-help at R-project.org <mailto:r-help at R-project.org> > <mailto:r-help at R-project.org <mailto:r-help at R-project.org>>>>; > >? >? > r-sig-geo <r-sig-geo at r-project.org > <mailto:r-sig-geo at r-project.org> > > <mailto:r-sig-geo at r-project.org <mailto:r-sig-geo at r-project.org>> > <mailto:r-sig-geo at r-project.org <mailto:r-sig-geo at r-project.org> > > <mailto:r-sig-geo at r-project.org <mailto:r-sig-geo at r-project.org>>>> > >? >? > Sent: Wed, Jun 5, 2019 10:52 am > >? >? > Subject: Re: [R] Plotting more than one regression line in ggplot > >? >? > > >? >? > Hello, > >? >? > > >? >? > This is pretty basic ggplot. > >? >? > > >? >? > > >? >? > lm1 <- ggplot(onepctCO2MEDIAN, aes(x, y)) + > >? >? >? ? geom_point(colour = 'blue') + > >? >? >? ? geom_smooth(method = 'lm') > >? >? > > >? >? > lm1 > >? >? > > >? >? > > >? >? > If you want to combine several datasets, you will have to have a > >? >? > variable telling which dataset is which. In the example below, > this is > >? >? > column 'id'. > >? >? > > >? >? > > >? >? > onepctCO2MEDIAN2 <- onepctCO2MEDIAN > >? >? > onepctCO2MEDIAN2$y <- jitter(onepctCO2MEDIAN2$y) + 2 > >? >? > onepctCO2MEDIAN$id <- 1 > >? >? > onepctCO2MEDIAN2$id <- 2 > >? >? > df2 <- rbind(onepctCO2MEDIAN, onepctCO2MEDIAN2) > >? >? > > >? >? > ggplot(df2, aes(x, y, group = id, colour = factor(id))) + > >? >? >? ? geom_point() + > >? >? >? ? geom_smooth(method = 'lm') > >? >? > > >? >? > > >? >? > Hope this helps, > >? >? > > >? >? > Rui Barradas > >? >? > > >? >? > ?s 15:21 de 05/06/19, rain1290--- via R-help escreveu: > >? >? >? > I am trying to plot, using ggplot, a series of scatter plots > with > >? >? > regression lines for several datasets. I started with the following > >? >? > dataset, "onepectCO2MEDIAN". The data for this dataset is as > follows: > >? >? >? >? ??? onepctCO2MEDIAN > >? >? >? >? ??????????????????? x????????? y > >? >? >? >? ??? layer.1?? 0.000000000? 0.0000000 > >? >? >? >? ??? layer.2?? 0.006794447? 4.9002490 > >? >? >? >? ??? layer.3?? 0.014288058? 0.1608000 > >? >? >? >? ??? layer.4?? 0.022087920? 6.6349133 > >? >? >? >? ??? layer.5?? 0.030797357 -1.2429506 > >? >? >? >? ??? layer.6?? 0.038451072? 1.5643374 > >? >? >? >? ??? layer.7?? 0.048087904 -2.2659035 > >? >? >? >? ??? layer.8?? 0.058677729? 2.2070045 > >? >? >? >? ??? layer.9?? 0.069261406 -2.3677001 > >? >? >? >? ??? layer.10? 0.080524530 -1.0913506 > >? >? >? >? ??? layer.11? 0.092760246? 0.4099940 > >? >? >? >? ??? layer.12? 0.103789609 -0.1259727 > >? >? >? >? ??? layer.13? 0.116953168 -2.4138253 > >? >? >? >? ??? layer.14? 0.129253298? 7.0890257 > >? >? >? >? ??? layer.15? 0.141710050 -0.7593539 > >? >? >? >? ??? layer.16? 0.156002052? 0.0454416 > >? >? >? >? ??? layer.17? 0.170648172 -1.5349683 > >? >? >? >? ??? layer.18? 0.185318425? 6.5524201 > >? >? >? >? ??? layer.19? 0.199463055 -0.8312563 > >? >? >? >? ??? layer.20? 0.213513337 -2.5099183 > >? >? >? >? ??? layer.21? 0.228839271? 0.1365968 > >? >? >? >? ??? layer.22? 0.246981293 -1.3719845 > >? >? >? >? ??? layer.23? 0.263012767 -0.8712988 > >? >? >? >? ??? layer.24? 0.278505564? 0.6632584 > >? >? >? >? ??? layer.25? 0.293658361? 0.7938036 > >? >? >? >? ??? layer.26? 0.310747266? 3.4880637 > >? >? >? >? ??? layer.27? 0.325990349 -4.4612208 > >? >? >? >? ??? layer.28? 0.342517540? 0.0871734 > >? >? >? >? ??? layer.29? 0.362751633 -1.4171578 > >? >? >? >? ??? layer.30? 0.380199537 -0.9956508 > >? >? >? >? ??? layer.31? 0.394992948? 0.3215526 > >? >? >? >? ??? layer.32? 0.414373398? 3.1403866 > >? >? >? >? ??? layer.33? 0.430690214 -0.7376099 > >? >? >? >? ??? layer.34? 0.449738145 -2.4860541 > >? >? >? >? ??? layer.35? 0.470167458 -3.4235858 > >? >? >? >? ??? layer.36? 0.489019871? 0.4824748 > >? >? >? >? ??? layer.37? 0.507242471 -0.9785386 > >? >? >? >? ??? layer.38? 0.524314284? 8.5359684 > >? >? >? >? ??? layer.39? 0.543750525? 5.4844742 > >? >? >? >? ??? layer.40? 0.564234197? 3.2149367 > >? >? >? >? ??? layer.41? 0.583679616? 3.9168916 > >? >? >? >? ??? layer.42? 0.601459444? 4.4907020 > >? >? >? >? ??? layer.43? 0.619924664? 6.5410410 > >? >? >? >? ??? layer.44? 0.639932007? 4.8068650 > >? >? >? >? ??? layer.45? 0.661347181? 8.1510170 > >? >? >? >? ??? layer.46? 0.684117317? 0.2697413 > >? >? >? >? ??? layer.47? 0.704829752 -0.1807501 > >? >? >? >? ??? layer.48? 0.725045770? 9.7181249 > >? >? >? >? ??? layer.49? 0.745165825? 1.5406466 > >? >? >? >? ??? layer.50? 0.765016139 -1.6476041 > >? >? >? >? ??? layer.51? 0.783461511? 4.8024603 > >? >? >? >? ??? layer.52? 0.806382924? 4.0421516 > >? >? >? >? ??? layer.53? 0.829241335? 9.3756512 > >? >? >? >? ??? layer.54? 0.849924415? 5.3305050 > >? >? >? >? ??? layer.55? 0.871352434? 7.5445803 > >? >? >? >? ??? layer.56? 0.893632233? 6.4679547 > >? >? >? >? ??? layer.57? 0.916052133? 2.8096065 > >? >? >? >? ??? layer.58? 0.938579470? 5.3921661 > >? >? >? >? ??? layer.59? 0.959907651? 7.2043689 > >? >? >? >? ??? layer.60? 0.981643587? 3.3350806 > >? >? >? >? ??? layer.61? 1.004116774? 8.8690707 > >? >? >? >? ??? layer.62? 1.028363466? 1.7861299 > >? >? >? >? ??? layer.63? 1.054009140? 6.2555038 > >? >? >? >? ??? layer.64? 1.072440803? 7.6079236 > >? >? >? >? ??? layer.65? 1.094457805? 7.6871483 > >? >? >? >? ??? layer.66? 1.123176277? 4.7787764 > >? >? >? >? ??? layer.67? 1.149430871 12.7110502 > >? >? >? >? ??? layer.68? 1.170912921 -0.7156284 > >? >? >? >? ??? layer.69? 1.196743071? 1.6490899 > >? >? >? >? ??? layer.70? 1.218625903? 3.0363024 > >? >? >? >? ??? layer.71? 1.241868377? 4.2974769 > >? >? >? >? ??? layer.72? 1.267941594? 1.9543778 > >? >? >? >? ??? layer.73? 1.290708780? 3.9986964 > >? >? >? >? ??? layer.74? 1.313222289? 4.5179472 > >? >? >? >? ??? layer.75? 1.339045882? 0.9337905 > >? >? >? >? ??? layer.76? 1.362803459? 3.3050770 > >? >? >? >? ??? layer.77? 1.384450197? 3.5422970 > >? >? >? >? ??? layer.78? 1.409720302? 5.9973660 > >? >? >? >? ??? layer.79? 1.435851157? 0.5081869 > >? >? >? >? ??? layer.80? 1.455592215? 7.9661630 > >? >? >? >? ??? layer.81? 1.479495347? 9.9460496 > >? >? >? >? ??? layer.82? 1.506051958? 3.7908372 > >? >? >? >? ??? layer.83? 1.525728464? 2.5735847 > >? >? >? >? ??? layer.84? 1.549362063 10.1404974 > >? >? >? >? ??? layer.85? 1.573440671 13.7408304 > >? >? >? >? ??? layer.86? 1.600278735? 0.9335771 > >? >? >? >? ??? layer.87? 1.623879492? 9.7588742 > >? >? >? >? ??? layer.88? 1.650029302? 1.2769395 > >? >? >? >? ??? layer.89? 1.672362328 13.4970906 > >? >? >? >? ??? layer.90? 1.700221121 10.2087502 > >? >? >? >? ??? layer.91? 1.724793375? 1.6811275 > >? >? >? >? ??? layer.92? 1.751070559? 6.1178992 > >? >? >? >? ??? layer.93? 1.778022110 -0.1567626 > >? >? >? >? ??? layer.94? 1.803022087? 3.8237479 > >? >? >? >? ??? layer.95? 1.830668867? 4.4331468 > >? >? >? >? ??? layer.96? 1.855736911? 5.9790707 > >? >? >? >? ??? layer.97? 1.882615030 11.3104333 > >? >? >? >? ??? layer.98? 1.909218490? 8.2142607 > >? >? >? >? ??? layer.99? 1.938130021 15.3209674 > >? >? >? >? ??? layer.100 1.963727593? 5.8178217 > >? >? >? >? ??? layer.101 1.993271947? 9.6004907 > >? >? >? >? ??? layer.102 2.022548139? 3.4063646 > >? >? >? >? ??? layer.103 2.050679922? 4.7375010 > >? >? >? >? ??? layer.104 2.078064442? 3.0133019 > >? >? >? >? ??? layer.105 2.104113460? 5.5659522 > >? >? >? >? ??? layer.106 2.133597612 12.0346333 > >? >? >? >? ??? layer.107 2.164026260 -0.4028320 > >? >? >? >? ??? layer.108 2.194852829 10.5996780 > >? >? >? >? ??? layer.109 2.224257946? 5.4479584 > >? >? >? >? ??? layer.110 2.252194643? 4.7052374 > >? >? >? >? ??? layer.111 2.277335048 14.0962019 > >? >? >? >? ??? layer.112 2.304058313? 5.7149016 > >? >? >? >? ??? layer.113 2.330930233? 3.7780072 > >? >? >? >? ??? layer.114 2.357022762? 4.4120620 > >? >? >? >? ??? layer.115 2.386489272? 4.1866085 > >? >? >? >? ??? layer.116 2.417503953? 6.9078802 > >? >? >? >? ??? layer.117 2.448524356? 2.7825739 > >? >? >? >? ??? layer.118 2.478698969? 7.6171786 > >? >? >? >? ??? layer.119 2.510175705 10.2410603 > >? >? >? >? ??? layer.120 2.539697886? 8.1820711 > >? >? >? >? ??? layer.121 2.567915559? 4.8275494 > >? >? >? >? ??? layer.122 2.597463250 19.1624883 > >? >? >? >? ??? layer.123 2.627518773 16.0677109 > >? >? >? >? ??? layer.124 2.658759236 12.5897081 > >? >? >? >? ??? layer.125 2.692401528? 9.2907988 > >? >? >? >? ??? layer.126 2.721903205? 7.4262502 > >? >? >? >? ??? layer.127 2.753021359? 9.3902518 > >? >? >? >? ??? layer.128 2.786313415 12.6193550 > >? >? >? >? ??? layer.129 2.819564104 11.1121040 > >? >? >? >? ??? layer.130 2.850823164 15.7907100 > >? >? >? >? ??? layer.131 2.880394101 10.7425287 > >? >? >? >? ??? layer.132 2.911391258? 7.7971430 > >? >? >? >? ??? layer.133 2.942965150? 8.8060858 > >? >? >? >? ??? layer.134 2.974468350 17.5606266 > >? >? >? >? ??? layer.135 3.008983612 17.3088605 > >? >? >? >? ??? layer.136 3.040015221 13.4500543 > >? >? >? >? ??? layer.137 3.072668672 14.6377884 > >? >? >? >? ??? layer.138 3.105982423? 8.0798552dput(onepctCO2MEDIAN) > >? >? > dput(onepctCO2MEDIAN) > >? >? >? >? ??? structure(list(x = c(0, 0.00679444684647024, > > 0.014288058038801, > >? >? >? >? ??? 0.0220879195258021, > >? >? > 0.0307973567396402,0.0384510718286037,0.0480879042297602, > >? >? >? >? ??? 0.0586777292191982, 0.0692614056169987, > >? >? > 0.080524530261755,0.0927602462470531, > >? >? >? >? ??? 0.103789608925581, 0.116953168064356, 0.129253298044205, > >? >? > 0.141710050404072, > >? >? >? >? ??? 0.156002052128315, 0.170648172497749, 0.185318425297737, > >? >? > 0.199463054537773, > >? >? >? >? ??? 0.21351333707571, 0.22883927077055, 0.246981292963028, > >? >? > 0.263012766838074, > >? >? >? >? ??? 0.278505563735962, 0.29365836083889, 0.310747265815735, > >? >? > 0.325990349054337, > >? >? >? >? ??? 0.342517539858818, 0.362751632928848, 0.380199536681175, > >? >? > 0.39499294757843, > >? >? >? >? ??? 0.414373397827148, 0.430690214037895, 0.449738144874573, > >? >? > 0.470167458057404, > >? >? >? >? ??? 0.489019870758057, 0.507242470979691, 0.524314284324646, > >? >? > 0.543750524520874, > >? >? >? >? ??? 0.56423419713974, 0.583679616451263, 0.601459443569183, > >? >? > 0.619924664497375, > >? >? >? >? ??? 0.639932006597519, 0.661347180604935, 0.684117317199707, > >? >? > 0.704829752445221, > >? >? >? >? ??? 0.725045770406723, 0.745165824890137, 0.765016138553619, > >? >? > 0.783461511135101, > >? >? >? >? ??? 0.806382924318314, 0.829241335391998, 0.84992441534996, > >? >? > 0.871352434158325, > >? >? >? >? ??? 0.893632233142853, 0.916052132844925, 0.938579469919205, > >? >? > 0.959907650947571, > >? >? >? >? ??? 0.981643587350845, 1.00411677360535, 1.02836346626282, > >? >? > 1.05400913953781, > >? >? >? >? ??? 1.07244080305099, 1.09445780515671, 1.12317627668381, > >? >? > 1.14943087100983, > >? >? >? >? ??? 1.17091292142868, 1.19674307107925, 1.21862590312958, > >? >? > 1.24186837673187, > >? >? >? >? ??? 1.26794159412384, 1.2907087802887, 1.31322228908539, > >? >? > 1.33904588222504, > >? >? >? >? ??? 1.36280345916748, 1.38445019721985, 1.40972030162811, > >? >? > 1.43585115671158, > >? >? >? >? ??? 1.45559221506119, 1.47949534654617, 1.50605195760727, > >? >? > 1.52572846412659, > >? >? >? >? ??? 1.5493620634079, 1.5734406709671, 1.60027873516083, > >? >? > 1.62387949228287, > >? >? >? >? ??? 1.65002930164337, 1.67236232757568, 1.70022112131119, > >? >? > 1.72479337453842, > >? >? >? >? ??? 1.75107055902481, 1.77802211046219, 1.80302208662033, > >? >? > 1.83066886663437, > >? >? >? >? ??? 1.85573691129684, 1.88261502981186, 1.90921849012375, > >? >? > 1.93813002109528, > >? >? >? >? ??? 1.96372759342194, 1.99327194690704, 2.02254813909531, > >? >? > 2.05067992210388, > >? >? >? >? ??? 2.07806444168091, 2.1041134595871, 2.13359761238098, > >? >? > 2.16402626037598, > >? >? >? >? ??? 2.19485282897949, 2.2242579460144, 2.25219464302063, > >? >? > 2.27733504772186, > >? >? >? >? ??? 2.30405831336975, 2.33093023300171, 2.35702276229858, > >? >? > 2.38648927211761, > >? >? >? >? ??? 2.41750395298004, 2.44852435588837, 2.47869896888733, > >? >? > 2.51017570495605, > >? >? >? >? ??? 2.53969788551331, 2.567915558815, 2.59746325016022, > >? >? > 2.62751877307892, > >? >? >? >? ??? 2.65875923633575, 2.69240152835846, 2.72190320491791, > >? >? > 2.75302135944366, > >? >? >? >? ??? 2.78631341457367, 2.8195641040802, 2.85082316398621, > >? >? > 2.88039410114288, > >? >? >? >? ??? 2.91139125823975, 2.94296514987946, 2.97446835041046, > >? >? > 3.00898361206055, > >? >? >? >? ??? 3.04001522064209, 3.07266867160797, 3.10598242282867), y > > c(0, > >? >? >? >? ??? 4.90024901723162, 0.160799993152722, 6.63491326258641, > >? >? > -1.24295055804536, > >? >? >? >? ??? 1.56433744259162, -2.26590352245208, 2.20700446463354, > >? >? > -2.36770012911069, > >? >? >? >? ??? -1.09135061899174, 0.409993989292701, -0.125972681525582, > >? >? > -2.41382533818026, > >? >? >? >? ??? 7.08902570153028, -0.759353880417294, 0.0454415959640926, > >? >? > -1.53496826259972, > >? >? >? >? ??? 6.55242014096194, -0.831256280861552, -2.50991825629084, > >? >? > 0.136596820654013, > >? >? >? >? ??? -1.37198445498419, -0.871298832596736, 0.663258363762466, > >? >? > 0.793803634291308, > >? >? >? >? ??? 3.48806373666998, -4.46122081238949, 0.0871733966938564, > >? >? > -1.41715777257774, > >? >? >? >? ??? -0.995650815648318, 0.32155262317503, 3.14038657369241, > >? >? > -0.737609879885404, > >? >? >? >? ??? -2.48605406511292, -3.423585843908, 0.482474753780281, > >? >? > -0.978538630093809, > >? >? >? >? ??? 8.53596837794201, 5.48447420320695, 3.21493665820644, > >? >? > 3.91689160157513, > >? >? >? >? ??? 4.49070195980797, 6.54104103157039, 4.80686500146557, > >? >? > 8.15101701282067, > >? >? >? >? ??? 0.26974132191657, -0.180750068063062, 9.71812491230244, > >? >? > 1.54064657400204, > >? >? >? >? ??? -1.64760408795688, 4.80246028991894, 4.04215159914344, > >? >? > 9.37565121768513, > >? >? >? >? ??? 5.33050496938428, 7.54458026088508, 6.46795470819342, > >? >? > 2.80960651433971, > >? >? >? >? ??? 5.39216613235986, 7.20436888038562, 3.3350806460997, > >? >? > 8.86907069895943, > >? >? >? >? ??? 1.78612988613659, 6.25550382050395, 7.60792364896564, > >? >? > 7.68714830528144, > >? >? >? >? ??? 4.77877638957615, 12.7110501777314, -0.715628443181046, > >? >? > 1.64908991824022, > >? >? >? >? ??? 3.03630240714679, 4.29747688442346, 1.95437780501881, > >? >? > 3.99869636910933, > >? >? >? >? ??? 4.51794724689848, 0.933790484492299, 3.30507700050003, > >? >? > 3.5422970157433, > >? >? >? >? ??? 5.99736597322524, 0.508186860060022, 7.96616300581067, > >? >? > 9.94604963036295, > >? >? >? >? ??? 3.79083717222623, 2.57358468532258, 10.1404974171776, > >? >? > 13.7408303595752, > >? >? >? >? ??? 0.933577123801399, 9.75887417074129, 1.27693947132921, > >? >? > 13.4970905965787, > >? >? >? >? ??? 10.2087501765735, 1.68112753028756, 6.1178991508927, > >? >? > -0.156762622680077, > >? >? >? >? ??? 3.82374791691426, 4.43314678736265, 5.97907067167507, > >? >? > 11.3104332518482, > >? >? >? >? ??? 8.21426074201525, 15.320967360602, 5.81782169471483, > >? >? > 9.6004907412354, > >? >? >? >? ??? 3.40636455909704, 4.73750103921864, 3.0133019468806, > >? >? > 5.56595224859066, > >? >? >? >? ??? 12.0346332527215, -0.40283199827104, 10.5996779538754, > >? >? > 5.44795836991128, > >? >? >? >? ??? 4.70523736412729, 14.096201892183, 5.71490161813391, > >? >? > 3.77800720810782, > >? >? >? >? ??? 4.41206200639436, 4.18660847858423, 6.90788020044911, > >? >? > 2.78257393345915, > >? >? >? >? ??? 7.61717857379431, 10.2410602647684, 8.18207106836167, > >? >? > 4.82754943871433, > >? >? >? >? ??? 19.1624882857155, 16.0677109398509, 12.589708067017, > >? >? > 9.29079879799404, > >? >? >? >? ??? 7.42625019725314, 9.39025179806185, 12.6193550331438, > >? >? > 11.1121039747257, > >? >? >? >? ??? 15.7907099734986, 10.7425286789233, 7.79714300307344, > >? >? > 8.80608578166101, > >? >? >? >? ??? 17.5606266346039, 17.3088604929222, 13.4500543478523, > >? >? > 14.6377884248645, > >? >? >? >? ??? 8.07985518296064)), class = "data.frame", row.names > >? > c("layer.1", > >? >? >? >? ??? "layer.2", "layer.3", "layer.4", "layer.5", "layer.6", > > "layer.7", > >? >? >? >? ??? "layer.8", "layer.9", "layer.10", "layer.11", "layer.12", > >? >? > "layer.13", > >? >? >? >? ??? "layer.14", "layer.15", "layer.16", "layer.17", "layer.18", > >? >? > "layer.19", > >? >? >? >? ??? "layer.20", "layer.21", "layer.22", "layer.23", "layer.24", > >? >? > "layer.25", > >? >? >? >? ??? "layer.26", "layer.27", "layer.28", "layer.29", "layer.30", > >? >? > "layer.31", > >? >? >? >? ??? "layer.32", "layer.33", "layer.34", "layer.35", "layer.36", > >? >? > "layer.37", > >? >? >? >? ??? "layer.38", "layer.39", "layer.40", "layer.41", "layer.42", > >? >? > "layer.43", > >? >? >? >? ??? "layer.44", "layer.45", "layer.46", "layer.47", "layer.48", > >? >? > "layer.49", > >? >? >? >? ??? "layer.50", "layer.51", "layer.52", "layer.53", "layer.54", > >? >? > "layer.55", > >? >? >? >? ??? "layer.56", "layer.57", "layer.58", "layer.59", "layer.60", > >? >? > "layer.61", > >? >? >? >? ??? "layer.62", "layer.63", "layer.64", "layer.65", "layer.66", > >? >? > "layer.67", > >? >? >? >? ??? "layer.68", "layer.69", "layer.70", "layer.71", "layer.72", > >? >? > "layer.73", > >? >? >? >? ??? "layer.74", "layer.75", "layer.76", "layer.77", "layer.78", > >? >? > "layer.79", > >? >? >? >? ??? "layer.80", "layer.81", "layer.82", "layer.83", "layer.84", > >? >? > "layer.85", > >? >? >? >? ??? "layer.86", "layer.87", "layer.88", "layer.89", "layer.90", > >? >? > "layer.91", > >? >? >? >? ??? "layer.92", "layer.93", "layer.94", "layer.95", "layer.96", > >? >? > "layer.97", > >? >? >? >? ??? "layer.98", "layer.99", "layer.100", "layer.101", > "layer.102", > >? >? >? >? ??? "layer.103", "layer.104", "layer.105", "layer.106", > > "layer.107", > >? >? >? >? ??? "layer.108", "layer.109", "layer.110", "layer.111", > > "layer.112", > >? >? >? >? ??? "layer.113", "layer.114", "layer.115", "layer.116", > > "layer.117", > >? >? >? >? ??? "layer.118", "layer.119", "layer.120", "layer.121", > > "layer.122", > >? >? >? >? ??? "layer.123", "layer.124", "layer.125", "layer.126", > > "layer.127", > >? >? >? >? ??? "layer.128", "layer.129", "layer.130", "layer.131", > > "layer.132", > >? >? >? >? ??? "layer.133", "layer.134", "layer.135", "layer.136", > > "layer.137", > >? >? >? >? ??? "layer.138")) > >? >? >? > I started with the following to generate the first > regression line > >? >? > and scatter plot:??? lm<-ggplot(onepctCO2MEDIAN) + > >? >? >? >? ??? geom_jitter(aes(RCP1pctCO2cumulativeMedian[1:138], > > departurea), > >? >? >? >? ??? colour="blue") + > >? > geom_smooth(aes(RCP1pctCO2cumulativeMedian[1:138], > >? >? >? >? ??? departurea), method=lm) > >? >? >? > But I receive this error:? ??Warning message: > >? >? >? >? ??? Computation failed in `stat_smooth()`: > >? >? >? >? ??? 'what' must be a function or character string > >? >? >? > A blue scatter plot is successfully generated, but the > problem is > >? >? > that the regression line does not appear, presumably related to the > >? >? > above warning. > >? >? >? > Is there a reason for this? I would appreciate any assistance! > >? >? >? > ??? [[alternative HTML version deleted]] > >? >? > > >? >? >? > > >? >? >? > ______________________________________________ > >? >? >? > R-help at r-project.org <mailto:R-help at r-project.org> > <mailto:R-help at r-project.org <mailto:R-help at r-project.org>> > > <mailto:R-help at r-project.org <mailto:R-help at r-project.org> > <mailto:R-help at r-project.org <mailto:R-help at r-project.org>>> mailing list -- > >? > To UNSUBSCRIBE and more, see > >? >? >? > https://stat.ethz.ch/mailman/listinfo/r-help > >? >? >? > PLEASE do read the posting guide > >? >? > http://www.R-project.org/posting-guide.html > >? >? >? > and provide commented, minimal, self-contained, reproducible > code. > >? >? > > >? >? >? >
r@i@1290 m@iii@g oii @im@com
2019-Jun-06 20:08 UTC
[R] Plotting more than one regression line in ggplot
Hi Rui, Yes! This worked just fine! Thank you so, so much for your time and patience!? -----Original Message----- From: Rui Barradas <ruipbarradas at sapo.pt> To: rain1290 <rain1290 at aim.com>; r-help <r-help at R-project.org> Sent: Thu, Jun 6, 2019 3:25 pm Subject: Re: [R] Plotting more than one regression line in ggplot Hello, Try this. values_to_plot <- c("onepctCO2MEDIAN", "RCP4.5MEDIAN", "RCP8.5MEDIAN") sub_df <- subset(NewestdataUltra, L1 %in% values_to_plot) ggplot(sub_df, aes(x, value, colour = L1)) + ? geom_point() + ? scale_color_manual(values = c("green", "red", "blue")) + ? geom_smooth(method = lm) If you have more L1 values to plot, add more colors. The number of colors must be equal to length(values_to_plot) Hope this helps, Rui Barradas ?s 17:49 de 06/06/19, rain1290 at aim.com escreveu:> Hi Rui, NewestdataUltra looks like this (Note that "HistoricalMEDIAN" is > hidden, but it follows "RCP8.5MEDIAN" listing the same way): x variable > value L1 1 0.000000000 y 0.00000000 onepctCO2MEDIAN 2 0.006794447 y > 4.90024902 onepctCO2MEDIAN 3 0.014288058 y 0.16079999 onepctCO2MEDIAN 4 > 0.022087920 y 6.63491326 onepctCO2MEDIAN 5 0.030797357 y -1.24295056 > onepctCO2MEDIAN 6 0.038451072 y 1.56433744 onepctCO2MEDIAN 7 0.048087904 > y -2.26590352 onepctCO2MEDIAN 8 0.058677729 y 2.20700446 onepctCO2MEDIAN > 9 0.069261406 y -2.36770013 onepctCO2MEDIAN 10 0.080524530 y -1.09135062 > onepctCO2MEDIAN 11 0.092760246 y 0.40999399 onepctCO2MEDIAN 12 > 0.103789609 y -0.12597268 onepctCO2MEDIAN 13 0.116953168 y -2.41382534 > onepctCO2MEDIAN 14 0.129253298 y 7.08902570 onepctCO2MEDIAN 15 > 0.141710050 y -0.75935388 onepctCO2MEDIAN 16 0.156002052 y 0.04544160 > onepctCO2MEDIAN 17 0.170648172 y -1.53496826 onepctCO2MEDIAN 18 > 0.185318425 y 6.55242014 onepctCO2MEDIAN 19 0.199463055 y -0.83125628 > onepctCO2MEDIAN 20 0.213513337 y -2.50991826 onepctCO2MEDIAN 21 > 0.228839271 y 0.13659682 onepctCO2MEDIAN 22 0.246981293 y -1.37198445 > onepctCO2MEDIAN 23 0.263012767 y -0.87129883 onepctCO2MEDIAN 24 > 0.278505564 y 0.66325836 onepctCO2MEDIAN 25 0.293658361 y 0.79380363 > onepctCO2MEDIAN 26 0.310747266 y 3.48806374 onepctCO2MEDIAN 27 > 0.325990349 y -4.46122081 onepctCO2MEDIAN 28 0.342517540 y 0.08717340 > onepctCO2MEDIAN 29 0.362751633 y -1.41715777 onepctCO2MEDIAN 30 > 0.380199537 y -0.99565082 onepctCO2MEDIAN 31 0.394992948 y 0.32155262 > onepctCO2MEDIAN 32 0.414373398 y 3.14038657 onepctCO2MEDIAN 33 > 0.430690214 y -0.73760988 onepctCO2MEDIAN 34 0.449738145 y -2.48605407 > onepctCO2MEDIAN 35 0.470167458 y -3.42358584 onepctCO2MEDIAN 36 > 0.489019871 y 0.48247475 onepctCO2MEDIAN 37 0.507242471 y -0.97853863 > onepctCO2MEDIAN 38 0.524314284 y 8.53596838 onepctCO2MEDIAN 39 > 0.543750525 y 5.48447420 onepctCO2MEDIAN 40 0.564234197 y 3.21493666 > onepctCO2MEDIAN 41 0.583679616 y 3.91689160 onepctCO2MEDIAN 42 > 0.601459444 y 4.49070196 onepctCO2MEDIAN 43 0.619924664 y 6.54104103 > onepctCO2MEDIAN 44 0.639932007 y 4.80686500 onepctCO2MEDIAN 45 > 0.661347181 y 8.15101701 onepctCO2MEDIAN 46 0.684117317 y 0.26974132 > onepctCO2MEDIAN 47 0.704829752 y -0.18075007 onepctCO2MEDIAN 48 > 0.725045770 y 9.71812491 onepctCO2MEDIAN 49 0.745165825 y 1.54064657 > onepctCO2MEDIAN 50 0.765016139 y -1.64760409 onepctCO2MEDIAN 51 > 0.783461511 y 4.80246029 onepctCO2MEDIAN 52 0.806382924 y 4.04215160 > onepctCO2MEDIAN 53 0.829241335 y 9.37565122 onepctCO2MEDIAN 54 > 0.849924415 y 5.33050497 onepctCO2MEDIAN 55 0.871352434 y 7.54458026 > onepctCO2MEDIAN 56 0.893632233 y 6.46795471 onepctCO2MEDIAN 57 > 0.916052133 y 2.80960651 onepctCO2MEDIAN 58 0.938579470 y 5.39216613 > onepctCO2MEDIAN 59 0.959907651 y 7.20436888 onepctCO2MEDIAN 60 > 0.981643587 y 3.33508065 onepctCO2MEDIAN 61 1.004116774 y 8.86907070 > onepctCO2MEDIAN 62 1.028363466 y 1.78612989 onepctCO2MEDIAN 63 > 1.054009140 y 6.25550382 onepctCO2MEDIAN 64 1.072440803 y 7.60792365 > onepctCO2MEDIAN 65 1.094457805 y 7.68714831 onepctCO2MEDIAN 66 > 1.123176277 y 4.77877639 onepctCO2MEDIAN 67 1.149430871 y 12.71105018 > onepctCO2MEDIAN 68 1.170912921 y -0.71562844 onepctCO2MEDIAN 69 > 1.196743071 y 1.64908992 onepctCO2MEDIAN 70 1.218625903 y 3.03630241 > onepctCO2MEDIAN 71 1.241868377 y 4.29747688 onepctCO2MEDIAN 72 > 1.267941594 y 1.95437781 onepctCO2MEDIAN 73 1.290708780 y 3.99869637 > onepctCO2MEDIAN 74 1.313222289 y 4.51794725 onepctCO2MEDIAN 75 > 1.339045882 y 0.93379048 onepctCO2MEDIAN 76 1.362803459 y 3.30507700 > onepctCO2MEDIAN 77 1.384450197 y 3.54229702 onepctCO2MEDIAN 78 > 1.409720302 y 5.99736597 onepctCO2MEDIAN 79 1.435851157 y 0.50818686 > onepctCO2MEDIAN 80 1.455592215 y 7.96616301 onepctCO2MEDIAN 81 > 1.479495347 y 9.94604963 onepctCO2MEDIAN 82 1.506051958 y 3.79083717 > onepctCO2MEDIAN 83 1.525728464 y 2.57358469 onepctCO2MEDIAN 84 > 1.549362063 y 10.14049742 onepctCO2MEDIAN 85 1.573440671 y 13.74083036 > onepctCO2MEDIAN 86 1.600278735 y 0.93357712 onepctCO2MEDIAN 87 > 1.623879492 y 9.75887417 onepctCO2MEDIAN 88 1.650029302 y 1.27693947 > onepctCO2MEDIAN 89 1.672362328 y 13.49709060 onepctCO2MEDIAN 90 > 1.700221121 y 10.20875018 onepctCO2MEDIAN 91 1.724793375 y 1.68112753 > onepctCO2MEDIAN 92 1.751070559 y 6.11789915 onepctCO2MEDIAN 93 > 1.778022110 y -0.15676262 onepctCO2MEDIAN 94 1.803022087 y 3.82374792 > onepctCO2MEDIAN 95 1.830668867 y 4.43314679 onepctCO2MEDIAN 96 > 1.855736911 y 5.97907067 onepctCO2MEDIAN 97 1.882615030 y 11.31043325 > onepctCO2MEDIAN 98 1.909218490 y 8.21426074 onepctCO2MEDIAN 99 > 1.938130021 y 15.32096736 onepctCO2MEDIAN 100 1.963727593 y 5.81782169 > onepctCO2MEDIAN 101 1.993271947 y 9.60049074 onepctCO2MEDIAN 102 > 2.022548139 y 3.40636456 onepctCO2MEDIAN 103 2.050679922 y 4.73750104 > onepctCO2MEDIAN 104 2.078064442 y 3.01330195 onepctCO2MEDIAN 105 > 2.104113460 y 5.56595225 onepctCO2MEDIAN 106 2.133597612 y 12.03463325 > onepctCO2MEDIAN 107 2.164026260 y -0.40283200 onepctCO2MEDIAN 108 > 2.194852829 y 10.59967795 onepctCO2MEDIAN 109 2.224257946 y 5.44795837 > onepctCO2MEDIAN 110 2.252194643 y 4.70523736 onepctCO2MEDIAN 111 > 2.277335048 y 14.09620189 onepctCO2MEDIAN 112 2.304058313 y 5.71490162 > onepctCO2MEDIAN 113 2.330930233 y 3.77800721 onepctCO2MEDIAN 114 > 2.357022762 y 4.41206201 onepctCO2MEDIAN 115 2.386489272 y 4.18660848 > onepctCO2MEDIAN 116 2.417503953 y 6.90788020 onepctCO2MEDIAN 117 > 2.448524356 y 2.78257393 onepctCO2MEDIAN 118 2.478698969 y 7.61717857 > onepctCO2MEDIAN 119 2.510175705 y 10.24106026 onepctCO2MEDIAN 120 > 2.539697886 y 8.18207107 onepctCO2MEDIAN 121 2.567915559 y 4.82754944 > onepctCO2MEDIAN 122 2.597463250 y 19.16248829 onepctCO2MEDIAN 123 > 2.627518773 y 16.06771094 onepctCO2MEDIAN 124 2.658759236 y 12.58970807 > onepctCO2MEDIAN 125 2.692401528 y 9.29079880 onepctCO2MEDIAN 126 > 2.721903205 y 7.42625020 onepctCO2MEDIAN 127 2.753021359 y 9.39025180 > onepctCO2MEDIAN 128 2.786313415 y 12.61935503 onepctCO2MEDIAN 129 > 2.819564104 y 11.11210397 onepctCO2MEDIAN 130 2.850823164 y 15.79070997 > onepctCO2MEDIAN 131 2.880394101 y 10.74252868 onepctCO2MEDIAN 132 > 2.911391258 y 7.79714300 onepctCO2MEDIAN 133 2.942965150 y 8.80608578 > onepctCO2MEDIAN 134 2.974468350 y 17.56062663 onepctCO2MEDIAN 135 > 3.008983612 y 17.30886049 onepctCO2MEDIAN 136 3.040015221 y 13.45005435 > onepctCO2MEDIAN 137 3.072668672 y 14.63778842 onepctCO2MEDIAN 138 > 3.105982423 y 8.07985518 onepctCO2MEDIAN 139 0.467429527 y -1.55704023 > RCP4.5MEDIAN 140 0.478266196 y -3.19367515 RCP4.5MEDIAN 141 0.489205229 > y -2.44452679 RCP4.5MEDIAN 142 0.500039143 y 0.87504367 RCP4.5MEDIAN 143 > 0.511021115 y -0.39185002 RCP4.5MEDIAN 144 0.519874968 y -4.18935168 > RCP4.5MEDIAN 145 0.528508358 y -3.64179524 RCP4.5MEDIAN 146 0.537377594 > y -2.58167128 RCP4.5MEDIAN 147 0.546194211 y 2.20583694 RCP4.5MEDIAN 148 > 0.554720591 y -8.57764597 RCP4.5MEDIAN 149 0.563289814 y 2.88442536 > RCP4.5MEDIAN 150 0.572032790 y -3.90829882 RCP4.5MEDIAN 151 0.580939066 > y -3.39269048 RCP4.5MEDIAN 152 0.590921065 y -4.60849867 RCP4.5MEDIAN > 153 0.601575326 y -1.62572657 RCP4.5MEDIAN 154 0.612425555 y 1.14198465 > RCP4.5MEDIAN 155 0.623773319 y -3.38454122 RCP4.5MEDIAN 156 0.635363359 > y 2.43414265 RCP4.5MEDIAN 157 0.646722666 y 3.30007615 RCP4.5MEDIAN 158 > 0.658285673 y -0.79555442 RCP4.5MEDIAN 159 0.670250852 y -2.05220500 > RCP4.5MEDIAN 160 0.681702690 y -5.56808946 RCP4.5MEDIAN 161 0.693531145 > y 2.24168605 RCP4.5MEDIAN 162 0.706016061 y -4.83673351 RCP4.5MEDIAN 163 > 0.718231249 y 0.40086819 RCP4.5MEDIAN 164 0.730190911 y -1.98026992 > RCP4.5MEDIAN 165 0.741269845 y 0.39963115 RCP4.5MEDIAN 166 0.751000321 y > -0.83241777 RCP4.5MEDIAN 167 0.760886972 y -1.66101404 RCP4.5MEDIAN 168 > 0.771137164 y -1.05452982 RCP4.5MEDIAN 169 0.781856383 y -1.18338156 > RCP4.5MEDIAN 170 0.792607542 y 0.22722653 RCP4.5MEDIAN 171 0.803724128 y > -1.90642564 RCP4.5MEDIAN 172 0.815066246 y 0.75010550 RCP4.5MEDIAN 173 > 0.826027437 y -1.31108646 RCP4.5MEDIAN 174 0.836766732 y 1.05961515 > RCP4.5MEDIAN 175 0.847553312 y -2.06588010 RCP4.5MEDIAN 176 0.858331452 > y 8.53403315 RCP4.5MEDIAN 177 0.869154422 y 0.09979751 RCP4.5MEDIAN 178 > 0.879572539 y -2.50854353 RCP4.5MEDIAN 179 0.889426601 y 5.29550783 > RCP4.5MEDIAN 180 0.899009805 y 2.02909481 RCP4.5MEDIAN 181 0.908289566 y > 2.66922982 RCP4.5MEDIAN 182 0.917284978 y -4.17757196 RCP4.5MEDIAN 183 > 0.926128960 y 3.40202916 RCP4.5MEDIAN 184 0.934752874 y -1.92292218 > RCP4.5MEDIAN 185 0.943010943 y 6.36969150 RCP4.5MEDIAN 186 0.950999217 y > 1.86490308 RCP4.5MEDIAN 187 0.958795701 y 8.32126161 RCP4.5MEDIAN 188 > 0.966310396 y 10.15048356 RCP4.5MEDIAN 189 0.973635493 y 6.68925964 > RCP4.5MEDIAN 190 0.980834088 y -1.01615369 RCP4.5MEDIAN 191 0.987694790 > y 0.20892853 RCP4.5MEDIAN 192 0.994548581 y -1.52787222 RCP4.5MEDIAN 193 > 1.001274595 y -0.72374597 RCP4.5MEDIAN 194 1.007810612 y 2.26062309 > RCP4.5MEDIAN 195 1.014270389 y -2.40270340 RCP4.5MEDIAN 196 1.022719711 > y -1.94548262 RCP4.5MEDIAN 197 1.032070810 y -1.13053235 RCP4.5MEDIAN > 198 1.041118812 y 0.56107969 RCP4.5MEDIAN 199 1.050189571 y 3.27941835 > RCP4.5MEDIAN 200 1.059380475 y 3.01333588 RCP4.5MEDIAN 201 1.067877585 y > 4.87457336 RCP4.5MEDIAN 202 1.076078766 y 1.02457895 RCP4.5MEDIAN 203 > 1.084707357 y 4.49174869 RCP4.5MEDIAN 204 1.093223180 y 8.24629303 > RCP4.5MEDIAN 205 1.101414382 y -0.03364132 RCP4.5MEDIAN 206 1.108886304 > y 9.12509848 RCP4.5MEDIAN 207 1.115482896 y 1.74254621 RCP4.5MEDIAN 208 > 1.121856558 y 2.27004536 RCP4.5MEDIAN 209 1.127809421 y -0.65627179 > RCP4.5MEDIAN 210 1.133265961 y 12.02566969 RCP4.5MEDIAN 211 1.138549712 > y -1.04260843 RCP4.5MEDIAN 212 1.143910237 y -6.47611327 RCP4.5MEDIAN > 213 1.149437787 y 8.88410567 RCP4.5MEDIAN 214 1.154488347 y -4.24916247 > RCP4.5MEDIAN 215 1.159872903 y 7.90741918 RCP4.5MEDIAN 216 1.165477487 y > -3.91386711 RCP4.5MEDIAN 217 1.171103424 y 1.02370701 RCP4.5MEDIAN 218 > 1.177498256 y -3.71206616 RCP4.5MEDIAN 219 1.184003888 y -1.05694182 > RCP4.5MEDIAN 220 1.190395856 y 1.10501459 RCP4.5MEDIAN 221 1.197284280 y > 2.67668639 RCP4.5MEDIAN 222 1.204590551 y 2.21693031 RCP4.5MEDIAN 223 > 1.210807614 y 2.90252830 RCP4.5MEDIAN 224 1.216470664 y 2.75093766 > RCP4.5MEDIAN 225 1.221914148 y -0.73815245 RCP4.5MEDIAN 226 1.227580480 > y 3.58554626 RCP4.5MEDIAN 227 1.233317788 y 10.89961658 RCP4.5MEDIAN 228 > 1.238093406 y 3.23374387 RCP4.5MEDIAN 229 0.466622908 y -1.92366466 > RCP8.5MEDIAN 230 0.474211509 y 4.09292949 RCP8.5MEDIAN 231 0.480383051 y > -0.84736312 RCP8.5MEDIAN 232 0.486304903 y -0.80597889 RCP8.5MEDIAN 233 > 0.492151615 y -0.50244413 RCP8.5MEDIAN 234 0.499312643 y 3.07785701 > RCP8.5MEDIAN 235 0.508859905 y -6.15175322 RCP8.5MEDIAN 236 0.518758845 > y -0.51590144 RCP8.5MEDIAN 237 0.528675758 y 3.33135956 RCP8.5MEDIAN 238 > 0.538928423 y 2.62280891 RCP8.5MEDIAN 239 0.549621221 y -6.90096009 > RCP8.5MEDIAN 240 0.560062840 y -3.45706029 RCP8.5MEDIAN 241 0.570860791 > y 1.36192518 RCP8.5MEDIAN 242 0.581923368 y 0.34822359 RCP8.5MEDIAN 243 > 0.592628298 y 3.06882935 RCP8.5MEDIAN 244 0.604230648 y -3.56142825 > RCP8.5MEDIAN 245 0.615975167 y 10.35932554 RCP8.5MEDIAN 246 0.627448279 > y 10.21751629 RCP8.5MEDIAN 247 0.639401050 y 3.31040335 RCP8.5MEDIAN 248 > 0.651949591 y -0.53558775 RCP8.5MEDIAN 249 0.664634427 y 2.66081860 > RCP8.5MEDIAN 250 0.677343552 y 3.21379656 RCP8.5MEDIAN [ reached 'max' / > getOption("max.print") -- omitted 212 rows ] > > > If I wanted scatter plots and regression lines of onepctCO2MEDIAN, > RCP4.5MEDIAN and RCP8.5MEDIAN, would I do something like this? : > ggplot(subset(NewestdataUltra, L1 != 'onepctCO2MEDIAN'), aes(x, value, > colour = L1)) + geom_point() + scale_color_manual(values =c("green", > "blue" "red", "black")) + geom_smooth(method = lm, se=FALSE) > **//___^ > Thanks, > > -----Original Message----- > From: Rui Barradas <ruipbarradas at sapo.pt> > To: rain1290 <rain1290 at aim.com>; r-help <r-help at R-project.org> > Sent: Thu, Jun 6, 2019 11:53 am > Subject: Re: [R] Plotting more than one regression line in ggplot > > Hello, > > It's impossible to say without seeing the data. > > What is the return value of > > df_tmp <- subset(NewestdataUltra, L1 != 'onepctCO2MEDIAN') > unique(df_tmp$L1) > > The number of colors must be the same as > > length(unique(df_tmp$L1)) > > > Hope this helps, > > Rui Barradas > > ?s 16:49 de 06/06/19, rain1290 at aim.com <mailto:rain1290 at aim.com> escreveu: >? > Hi Rui, >? > >? > Yes, you are right. It should be this, but I tried with only 3 colors, >? > as you suggested: >? > >? > ggplot(subset(NewestdataUltra, L1 != 'onepctCO2MEDIAN'), aes(x, value, >? > colour = L1)) + geom_point() + scale_color_manual(values =c("green", >? > "blue" "red")) + geom_smooth(method = lm, se=FALSE) >? > >? > **//___^ >? > **//___^I still end up with the same error, however, when I specify only >? > 3 colors. Why could this be? >? > >? > >? > -----Original Message----- >? > From: Rui Barradas <ruipbarradas at sapo.pt <mailto:ruipbarradas at sapo.pt>> >? > To: rain1290 <rain1290 at aim.com <mailto:rain1290 at aim.com>>; r-help > <r-help at R-project.org <mailto:r-help at R-project.org>> >? > Sent: Thu, Jun 6, 2019 11:18 am >? > Subject: Re: [R] Plotting more than one regression line in ggplot >? > >? > Hello, >? > >? > 1) In the text you say your dataset is named NewestdataUltra but in the >? > ggplot instruction it's Newestdata. One of these is wrong. >? > >? > 2) Is it onepctCO2MEDIAN or RCPonepctCO2MEDIAN? >? > >? > 3) You are filtering out the value in point ) above. So you only plot 3 >? > regression lines, you don't need 4 colors. >? > >? > >? > Hope this helps, >? > >? > Rui Barradas >? > >? > ?s 15:35 de 06/06/19, rain1290 at aim.com <mailto:rain1290 at aim.com> > <mailto:rain1290 at aim.com <mailto:rain1290 at aim.com>> escreveu: >? >? > Hi Rui (and everyone), >? >? > >? >? > >? >? > Thank you for this! Yes, this did work fine, as I can see my scatter >? >? > plots and regression lines on the same plot, along with the > appropriate >? >? > coloring scheme! :) >? >? > >? >? > Just one last question concerning this - I melted other dataframes > into >? >? > my new "NewestdataUltra". I now have 4 objects listed in there in this >? >? > order (starting from the top of the list): "onepctCO2MEDIAN", >? >? > "RCP4.5MEDIAN", RCP8.5MEDIAN", and "HistoricalMEDIAN". I tried > plotting >? >? > colored scattered plots and regression lines for these in this manner: >? >? > >? >? > ggplot(subset(Newestdata, L1 != 'RCPonepctCO2MEDIAN'), aes(x, value, >? >? > colour = L1)) + geom_point() + scale_color_manual(values =c("green", >? >? > "blue" "red", "black")) + geom_smooth(method = lm, se=FALSE) >? >? > >? >? > However, I received this error: >? >? > >? >? > Error: unexpected string constant in > "ggplot(subset(NewestdataUltra, L1 >? >? > != 'RCPonepctCO2MEDIAN'), aes(x, value, colour = L1)) + geom_point() + >? >? > scale_color_manual(values =c("green", "blue" "red"" >? >? > >? >? > **//___^ >? >? > >? >? > Why would this error appear?? I think that I assigned the colors >? >? > correctly to each of the four objects in question, so why would this >? > occur? >? >? > >? >? > Thank you, once again! >? >? > >? >? > -----Original Message----- >? >? > From: Rui Barradas <ruipbarradas at sapo.pt > <mailto:ruipbarradas at sapo.pt> <mailto:ruipbarradas at sapo.pt > <mailto:ruipbarradas at sapo.pt>>> >? >? > To: rain1290 <rain1290 at aim.com <mailto:rain1290 at aim.com> > <mailto:rain1290 at aim.com <mailto:rain1290 at aim.com>>>; r-help >? > <r-help at R-project.org <mailto:r-help at R-project.org> > <mailto:r-help at R-project.org <mailto:r-help at R-project.org>>> >? >? > Sent: Thu, Jun 6, 2019 6:52 am >? >? > Subject: Re: [R] Plotting more than one regression line in ggplot >? >? > >? >? > Hello, >? >? > >? >? > You are confusing some of the values of L1 with L1 itself. >? >? > If you just want two of those values in your plot, > "onepctCO2MEDIAN" and >? >? > "RCP8.5MEDIAN", you need to subset the data filtering out the rows > with >? >? > L1 == "RCP4.5MEDIAN". >? >? > >? >? > And please forget geom_jitter, it is completely inappropriate for the >? >? > type of scatter plot you are trying to graph. You jitter when there is >? >? > overplotting, not as a general purpose technique. >? >? > >? >? > Here is one way to do it. >? >? > >? >? > >? >? > ggplot(subset(NewestdataUltra, L1 != 'RCP4.5MEDIAN'), >? >? >? ? ? ? ? aes(x, value, colour = L1)) + >? >? >? ? geom_point() + >? >? >? ? scale_color_manual(values = c("green", "red")) + >? >? >? ? geom_smooth(method = lm) >? >? > >? >? > >? >? > Hope this helps, >? >? > >? >? > Rui Barradas >? >? > >? >? > ?s 22:37 de 05/06/19, rain1290 at aim.com <mailto:rain1290 at aim.com> > <mailto:rain1290 at aim.com <mailto:rain1290 at aim.com>> >? > <mailto:rain1290 at aim.com <mailto:rain1290 at aim.com> > <mailto:rain1290 at aim.com <mailto:rain1290 at aim.com>>> escreveu: >? >? >? > Hi Rui (and everyone), >? >? >? > >? >? >? > Thank you so much for your response! Much appreciated! >? >? >? > >? >? >? > What if I wanted I create several regression lines and scatter >? > plots in >? >? >? > the same ggplot using a "melted" dataset? I would like to create a >? >? >? > scatter plot and regression line for both the objects of >? >? >? > "onepctCO2MEDIAN" and "RCP8.5MEDIANThis melted dataset looks like >? > this: >? >? >? > >? >? >? > >? >? >? >? >NewestdataUltra >? >? >? > >? >? >? > x variable value L1 1 0.000000000 y 0.00000000 onepctCO2MEDIAN 2 >? >? >? > 0.006794447 y 4.90024902 onepctCO2MEDIAN 3 0.014288058 y 0.16079999 >? >? >? > onepctCO2MEDIAN 4 0.022087920 y 6.63491326 onepctCO2MEDIAN 5 >? > 0.030797357 >? >? >? > y -1.24295056 onepctCO2MEDIAN 6 0.038451072 y 1.56433744 >? > onepctCO2MEDIAN >? >? >? > 7 0.048087904 y -2.26590352 onepctCO2MEDIAN 8 0.058677729 y > 2.20700446 >? >? >? > onepctCO2MEDIAN 9 0.069261406 y -2.36770013 onepctCO2MEDIAN 10 >? >? >? > 0.080524530 y -1.09135062 onepctCO2MEDIAN 11 0.092760246 y > 0.40999399 >? >? >? > onepctCO2MEDIAN 12 0.103789609 y -0.12597268 onepctCO2MEDIAN 13 >? >? >? > 0.116953168 y -2.41382534 onepctCO2MEDIAN 14 0.129253298 y > 7.08902570 >? >? >? > onepctCO2MEDIAN 15 0.141710050 y -0.75935388 onepctCO2MEDIAN 16 >? >? >? > 0.156002052 y 0.04544160 onepctCO2MEDIAN 17 0.170648172 y > -1.53496826 >? >? >? > onepctCO2MEDIAN 18 0.185318425 y 6.55242014 onepctCO2MEDIAN 19 >? >? >? > 0.199463055 y -0.83125628 onepctCO2MEDIAN 20 0.213513337 y > -2.50991826 >? >? >? > onepctCO2MEDIAN 21 0.228839271 y 0.13659682 onepctCO2MEDIAN 22 >? >? >? > 0.246981293 y -1.37198445 onepctCO2MEDIAN 23 0.263012767 y > -0.87129883 >? >? >? > onepctCO2MEDIAN 24 0.278505564 y 0.66325836 onepctCO2MEDIAN 25 >? >? >? > 0.293658361 y 0.79380363 onepctCO2MEDIAN 26 0.310747266 y > 3.48806374 >? >? >? > onepctCO2MEDIAN 27 0.325990349 y -4.46122081 onepctCO2MEDIAN 28 >? >? >? > 0.342517540 y 0.08717340 onepctCO2MEDIAN 29 0.362751633 y > -1.41715777 >? >? >? > onepctCO2MEDIAN 30 0.380199537 y -0.99565082 onepctCO2MEDIAN 31 >? >? >? > 0.394992948 y 0.32155262 onepctCO2MEDIAN 32 0.414373398 y > 3.14038657 >? >? >? > onepctCO2MEDIAN 33 0.430690214 y -0.73760988 onepctCO2MEDIAN 34 >? >? >? > 0.449738145 y -2.48605407 onepctCO2MEDIAN 35 0.470167458 y > -3.42358584 >? >? >? > onepctCO2MEDIAN 36 0.489019871 y 0.48247475 onepctCO2MEDIAN 37 >? >? >? > 0.507242471 y -0.97853863 onepctCO2MEDIAN 38 0.524314284 y > 8.53596838 >? >? >? > onepctCO2MEDIAN 39 0.543750525 y 5.48447420 onepctCO2MEDIAN 40 >? >? >? > 0.564234197 y 3.21493666 onepctCO2MEDIAN 41 0.583679616 y > 3.91689160 >? >? >? > onepctCO2MEDIAN 42 0.601459444 y 4.49070196 onepctCO2MEDIAN 43 >? >? >? > 0.619924664 y 6.54104103 onepctCO2MEDIAN 44 0.639932007 y > 4.80686500 >? >? >? > onepctCO2MEDIAN 45 0.661347181 y 8.15101701 onepctCO2MEDIAN 46 >? >? >? > 0.684117317 y 0.26974132 onepctCO2MEDIAN 47 0.704829752 y > -0.18075007 >? >? >? > onepctCO2MEDIAN 48 0.725045770 y 9.71812491 onepctCO2MEDIAN 49 >? >? >? > 0.745165825 y 1.54064657 onepctCO2MEDIAN 50 0.765016139 y > -1.64760409 >? >? >? > onepctCO2MEDIAN 51 0.783461511 y 4.80246029 onepctCO2MEDIAN 52 >? >? >? > 0.806382924 y 4.04215160 onepctCO2MEDIAN 53 0.829241335 y > 9.37565122 >? >? >? > onepctCO2MEDIAN 54 0.849924415 y 5.33050497 onepctCO2MEDIAN 55 >? >? >? > 0.871352434 y 7.54458026 onepctCO2MEDIAN 56 0.893632233 y > 6.46795471 >? >? >? > onepctCO2MEDIAN 57 0.916052133 y 2.80960651 onepctCO2MEDIAN 58 >? >? >? > 0.938579470 y 5.39216613 onepctCO2MEDIAN 59 0.959907651 y > 7.20436888 >? >? >? > onepctCO2MEDIAN 60 0.981643587 y 3.33508065 onepctCO2MEDIAN 61 >? >? >? > 1.004116774 y 8.86907070 onepctCO2MEDIAN 62 1.028363466 y > 1.78612989 >? >? >? > onepctCO2MEDIAN 63 1.054009140 y 6.25550382 onepctCO2MEDIAN 64 >? >? >? > 1.072440803 y 7.60792365 onepctCO2MEDIAN 65 1.094457805 y > 7.68714831 >? >? >? > onepctCO2MEDIAN 66 1.123176277 y 4.77877639 onepctCO2MEDIAN 67 >? >? >? > 1.149430871 y 12.71105018 onepctCO2MEDIAN 68 1.170912921 y > -0.71562844 >? >? >? > onepctCO2MEDIAN 69 1.196743071 y 1.64908992 onepctCO2MEDIAN 70 >? >? >? > 1.218625903 y 3.03630241 onepctCO2MEDIAN 71 1.241868377 y > 4.29747688 >? >? >? > onepctCO2MEDIAN 72 1.267941594 y 1.95437781 onepctCO2MEDIAN 73 >? >? >? > 1.290708780 y 3.99869637 onepctCO2MEDIAN 74 1.313222289 y > 4.51794725 >? >? >? > onepctCO2MEDIAN 75 1.339045882 y 0.93379048 onepctCO2MEDIAN 76 >? >? >? > 1.362803459 y 3.30507700 onepctCO2MEDIAN 77 1.384450197 y > 3.54229702 >? >? >? > onepctCO2MEDIAN 78 1.409720302 y 5.99736597 onepctCO2MEDIAN 79 >? >? >? > 1.435851157 y 0.50818686 onepctCO2MEDIAN 80 1.455592215 y > 7.96616301 >? >? >? > onepctCO2MEDIAN 81 1.479495347 y 9.94604963 onepctCO2MEDIAN 82 >? >? >? > 1.506051958 y 3.79083717 onepctCO2MEDIAN 83 1.525728464 y > 2.57358469 >? >? >? > onepctCO2MEDIAN 84 1.549362063 y 10.14049742 onepctCO2MEDIAN 85 >? >? >? > 1.573440671 y 13.74083036 onepctCO2MEDIAN 86 1.600278735 y > 0.93357712 >? >? >? > onepctCO2MEDIAN 87 1.623879492 y 9.75887417 onepctCO2MEDIAN 88 >? >? >? > 1.650029302 y 1.27693947 onepctCO2MEDIAN 89 1.672362328 y > 13.49709060 >? >? >? > onepctCO2MEDIAN 90 1.700221121 y 10.20875018 onepctCO2MEDIAN 91 >? >? >? > 1.724793375 y 1.68112753 onepctCO2MEDIAN 92 1.751070559 y > 6.11789915 >? >? >? > onepctCO2MEDIAN 93 1.778022110 y -0.15676262 onepctCO2MEDIAN 94 >? >? >? > 1.803022087 y 3.82374792 onepctCO2MEDIAN 95 1.830668867 y > 4.43314679 >? >? >? > onepctCO2MEDIAN 96 1.855736911 y 5.97907067 onepctCO2MEDIAN 97 >? >? >? > 1.882615030 y 11.31043325 onepctCO2MEDIAN 98 1.909218490 y > 8.21426074 >? >? >? > onepctCO2MEDIAN 99 1.938130021 y 15.32096736 onepctCO2MEDIAN 100 >? >? >? > 1.963727593 y 5.81782169 onepctCO2MEDIAN 101 1.993271947 y > 9.60049074 >? >? >? > onepctCO2MEDIAN 102 2.022548139 y 3.40636456 onepctCO2MEDIAN 103 >? >? >? > 2.050679922 y 4.73750104 onepctCO2MEDIAN 104 2.078064442 y > 3.01330195 >? >? >? > onepctCO2MEDIAN 105 2.104113460 y 5.56595225 onepctCO2MEDIAN 106 >? >? >? > 2.133597612 y 12.03463325 onepctCO2MEDIAN 107 2.164026260 y >? > -0.40283200 >? >? >? > onepctCO2MEDIAN 108 2.194852829 y 10.59967795 onepctCO2MEDIAN 109 >? >? >? > 2.224257946 y 5.44795837 onepctCO2MEDIAN 110 2.252194643 y > 4.70523736 >? >? >? > onepctCO2MEDIAN 111 2.277335048 y 14.09620189 onepctCO2MEDIAN 112 >? >? >? > 2.304058313 y 5.71490162 onepctCO2MEDIAN 113 2.330930233 y > 3.77800721 >? >? >? > onepctCO2MEDIAN 114 2.357022762 y 4.41206201 onepctCO2MEDIAN 115 >? >? >? > 2.386489272 y 4.18660848 onepctCO2MEDIAN 116 2.417503953 y > 6.90788020 >? >? >? > onepctCO2MEDIAN 117 2.448524356 y 2.78257393 onepctCO2MEDIAN 118 >? >? >? > 2.478698969 y 7.61717857 onepctCO2MEDIAN 119 2.510175705 y > 10.24106026 >? >? >? > onepctCO2MEDIAN 120 2.539697886 y 8.18207107 onepctCO2MEDIAN 121 >? >? >? > 2.567915559 y 4.82754944 onepctCO2MEDIAN 122 2.597463250 y > 19.16248829 >? >? >? > onepctCO2MEDIAN 123 2.627518773 y 16.06771094 onepctCO2MEDIAN 124 >? >? >? > 2.658759236 y 12.58970807 onepctCO2MEDIAN 125 2.692401528 y > 9.29079880 >? >? >? > onepctCO2MEDIAN 126 2.721903205 y 7.42625020 onepctCO2MEDIAN 127 >? >? >? > 2.753021359 y 9.39025180 onepctCO2MEDIAN 128 2.786313415 y > 12.61935503 >? >? >? > onepctCO2MEDIAN 129 2.819564104 y 11.11210397 onepctCO2MEDIAN 130 >? >? >? > 2.850823164 y 15.79070997 onepctCO2MEDIAN 131 2.880394101 y >? > 10.74252868 >? >? >? > onepctCO2MEDIAN 132 2.911391258 y 7.79714300 onepctCO2MEDIAN 133 >? >? >? > 2.942965150 y 8.80608578 onepctCO2MEDIAN 134 2.974468350 y > 17.56062663 >? >? >? > onepctCO2MEDIAN 135 3.008983612 y 17.30886049 onepctCO2MEDIAN 136 >? >? >? > 3.040015221 y 13.45005435 onepctCO2MEDIAN 137 3.072668672 y >? > 14.63778842 >? >? >? > onepctCO2MEDIAN 138 3.105982423 y 8.07985518 onepctCO2MEDIAN 139 >? >? >? > 0.467429527 y -1.55704023 RCP4.5MEDIAN 140 0.478266196 y > -3.19367515 >? >? >? > RCP4.5MEDIAN 141 0.489205229 y -2.44452679 RCP4.5MEDIAN 142 >? > 0.500039143 >? >? >? > y 0.87504367 RCP4.5MEDIAN 143 0.511021115 y -0.39185002 >? > RCP4.5MEDIAN 144 >? >? >? > 0.519874968 y -4.18935168 RCP4.5MEDIAN 145 0.528508358 y > -3.64179524 >? >? >? > RCP4.5MEDIAN 146 0.537377594 y -2.58167128 RCP4.5MEDIAN 147 >? > 0.546194211 >? >? >? > y 2.20583694 RCP4.5MEDIAN 148 0.554720591 y -8.57764597 >? > RCP4.5MEDIAN 149 >? >? >? > 0.563289814 y 2.88442536 RCP4.5MEDIAN 150 0.572032790 y -3.90829882 >? >? >? > RCP4.5MEDIAN 151 0.580939066 y -3.39269048 RCP4.5MEDIAN 152 >? > 0.590921065 >? >? >? > y -4.60849867 RCP4.5MEDIAN 153 0.601575326 y -1.62572657 > RCP4.5MEDIAN >? >? >? > 154 0.612425555 y 1.14198465 RCP4.5MEDIAN 155 0.623773319 y >? > -3.38454122 >? >? >? > RCP4.5MEDIAN 156 0.635363359 y 2.43414265 RCP4.5MEDIAN 157 >? > 0.646722666 y >? >? >? > 3.30007615 RCP4.5MEDIAN 158 0.658285673 y -0.79555442 > RCP4.5MEDIAN 159 >? >? >? > 0.670250852 y -2.05220500 RCP4.5MEDIAN 160 0.681702690 y > -5.56808946 >? >? >? > RCP4.5MEDIAN 161 0.693531145 y 2.24168605 RCP4.5MEDIAN 162 >? > 0.706016061 y >? >? >? > -4.83673351 RCP4.5MEDIAN 163 0.718231249 y 0.40086819 > RCP4.5MEDIAN 164 >? >? >? > 0.730190911 y -1.98026992 RCP4.5MEDIAN 165 0.741269845 y 0.39963115 >? >? >? > RCP4.5MEDIAN 166 0.751000321 y -0.83241777 RCP4.5MEDIAN 167 >? > 0.760886972 >? >? >? > y -1.66101404 RCP4.5MEDIAN 168 0.771137164 y -1.05452982 > RCP4.5MEDIAN >? >? >? > 169 0.781856383 y -1.18338156 RCP4.5MEDIAN 170 0.792607542 y >? > 0.22722653 >? >? >? > RCP4.5MEDIAN 171 0.803724128 y -1.90642564 RCP4.5MEDIAN 172 >? > 0.815066246 >? >? >? > y 0.75010550 RCP4.5MEDIAN 173 0.826027437 y -1.31108646 >? > RCP4.5MEDIAN 174 >? >? >? > 0.836766732 y 1.05961515 RCP4.5MEDIAN 175 0.847553312 y -2.06588010 >? >? >? > RCP4.5MEDIAN 176 0.858331452 y 8.53403315 RCP4.5MEDIAN 177 >? > 0.869154422 y >? >? >? > 0.09979751 RCP4.5MEDIAN 178 0.879572539 y -2.50854353 > RCP4.5MEDIAN 179 >? >? >? > 0.889426601 y 5.29550783 RCP4.5MEDIAN 180 0.899009805 y 2.02909481 >? >? >? > RCP4.5MEDIAN 181 0.908289566 y 2.66922982 RCP4.5MEDIAN 182 >? > 0.917284978 y >? >? >? > -4.17757196 RCP4.5MEDIAN 183 0.926128960 y 3.40202916 > RCP4.5MEDIAN 184 >? >? >? > 0.934752874 y -1.92292218 RCP4.5MEDIAN 185 0.943010943 y 6.36969150 >? >? >? > RCP4.5MEDIAN 186 0.950999217 y 1.86490308 RCP4.5MEDIAN 187 >? > 0.958795701 y >? >? >? > 8.32126161 RCP4.5MEDIAN 188 0.966310396 y 10.15048356 > RCP4.5MEDIAN 189 >? >? >? > 0.973635493 y 6.68925964 RCP4.5MEDIAN 190 0.980834088 y -1.01615369 >? >? >? > RCP4.5MEDIAN 191 0.987694790 y 0.20892853 RCP4.5MEDIAN 192 >? > 0.994548581 y >? >? >? > -1.52787222 RCP4.5MEDIAN 193 1.001274595 y -0.72374597 >? > RCP4.5MEDIAN 194 >? >? >? > 1.007810612 y 2.26062309 RCP4.5MEDIAN 195 1.014270389 y -2.40270340 >? >? >? > RCP4.5MEDIAN 196 1.022719711 y -1.94548262 RCP4.5MEDIAN 197 >? > 1.032070810 >? >? >? > y -1.13053235 RCP4.5MEDIAN 198 1.041118812 y 0.56107969 >? > RCP4.5MEDIAN 199 >? >? >? > 1.050189571 y 3.27941835 RCP4.5MEDIAN 200 1.059380475 y 3.01333588 >? >? >? > RCP4.5MEDIAN 201 1.067877585 y 4.87457336 RCP4.5MEDIAN 202 >? > 1.076078766 y >? >? >? > 1.02457895 RCP4.5MEDIAN 203 1.084707357 y 4.49174869 > RCP4.5MEDIAN 204 >? >? >? > 1.093223180 y 8.24629303 RCP4.5MEDIAN 205 1.101414382 y -0.03364132 >? >? >? > RCP4.5MEDIAN 206 1.108886304 y 9.12509848 RCP4.5MEDIAN 207 >? > 1.115482896 y >? >? >? > 1.74254621 RCP4.5MEDIAN 208 1.121856558 y 2.27004536 > RCP4.5MEDIAN 209 >? >? >? > 1.127809421 y -0.65627179 RCP4.5MEDIAN 210 1.133265961 y > 12.02566969 >? >? >? > RCP4.5MEDIAN 211 1.138549712 y -1.04260843 RCP4.5MEDIAN 212 >? > 1.143910237 >? >? >? > y -6.47611327 RCP4.5MEDIAN 213 1.149437787 y 8.88410567 >? > RCP4.5MEDIAN 214 >? >? >? > 1.154488347 y -4.24916247 RCP4.5MEDIAN 215 1.159872903 y 7.90741918 >? >? >? > RCP4.5MEDIAN 216 1.165477487 y -3.91386711 RCP4.5MEDIAN 217 >? > 1.171103424 >? >? >? > y 1.02370701 RCP4.5MEDIAN 218 1.177498256 y -3.71206616 >? > RCP4.5MEDIAN 219 >? >? >? > 1.184003888 y -1.05694182 RCP4.5MEDIAN 220 1.190395856 y 1.10501459 >? >? >? > RCP4.5MEDIAN 221 1.197284280 y 2.67668639 RCP4.5MEDIAN 222 >? > 1.204590551 y >? >? >? > 2.21693031 RCP4.5MEDIAN 223 1.210807614 y 2.90252830 > RCP4.5MEDIAN 224 >? >? >? > 1.216470664 y 2.75093766 RCP4.5MEDIAN 225 1.221914148 y -0.73815245 >? >? >? > RCP4.5MEDIAN 226 1.227580480 y 3.58554626 RCP4.5MEDIAN 227 >? > 1.233317788 y >? >? >? > 10.89961658 RCP4.5MEDIAN 228 1.238093406 y 3.23374387 > RCP4.5MEDIAN 229 >? >? >? > 0.466622908 y -1.92366466 RCP8.5MEDIAN 230 0.474211509 y 4.09292949 >? >? >? > RCP8.5MEDIAN 231 0.480383051 y -0.84736312 RCP8.5MEDIAN 232 >? > 0.486304903 >? >? >? > y -0.80597889 RCP8.5MEDIAN 233 0.492151615 y -0.50244413 > RCP8.5MEDIAN >? >? >? > 234 0.499312643 y 3.07785701 RCP8.5MEDIAN 235 0.508859905 y >? > -6.15175322 >? >? >? > RCP8.5MEDIAN 236 0.518758845 y -0.51590144 RCP8.5MEDIAN 237 >? > 0.528675758 >? >? >? > y 3.33135956 RCP8.5MEDIAN 238 0.538928423 y 2.62280891 >? > RCP8.5MEDIAN 239 >? >? >? > 0.549621221 y -6.90096009 RCP8.5MEDIAN 240 0.560062840 y > -3.45706029 >? >? >? > RCP8.5MEDIAN 241 0.570860791 y 1.36192518 RCP8.5MEDIAN 242 >? > 0.581923368 y >? >? >? > 0.34822359 RCP8.5MEDIAN 243 0.592628298 y 3.06882935 > RCP8.5MEDIAN 244 >? >? >? > 0.604230648 y -3.56142825 RCP8.5MEDIAN 245 0.615975167 y > 10.35932554 >? >? >? > RCP8.5MEDIAN 246 0.627448279 y 10.21751629 RCP8.5MEDIAN 247 >? > 0.639401050 >? >? >? > y 3.31040335 RCP8.5MEDIAN 248 0.651949591 y -0.53558775 >? > RCP8.5MEDIAN 249 >? >? >? > 0.664634427 y 2.66081860 RCP8.5MEDIAN 250 0.677343552 y 3.21379656 >? >? >? > RCP8.5MEDIAN Maybe something like this? >? >? >? > >? >? >? > lusher<-ggplot(NewestdataULTRA) + >? >? >? > geom_jitter(aes(x,value,onepctCO2MEDIAN=L1), colour="green") + >? >? >? > geom_smooth(aes(x, value, onepctCO2MEDIAN=L1), method=lm) + >? >? >? > geom_jitter(aes(x, value, RCP8.5MEDIAN=L1), colour="red")**//___^ >? >? >? > **//___^ >? >? >? > I receive this warning, however: >? >? >? > >? >? >? > Warning:Ignoring unknown aesthetics: onepctCO2MEDIAN > Warning:Ignoring >? >? >? > unknown aesthetics: onepctCO2MEDIAN >? >? >? > >? >? >? > **//___^ >? >? >? > Perhaps I am not assigning the columns properly? Essentially, I > just >? >? >? > want create two scatter plots and two regression lines for > these two >? >? >? > objects. >? >? >? > >? >? >? > Once again, any assistance would be greatly appreciated! >? >? >? > >? >? >? > -----Original Message----- >? >? >? > From: Rui Barradas <ruipbarradas at sapo.pt > <mailto:ruipbarradas at sapo.pt> >? > <mailto:ruipbarradas at sapo.pt <mailto:ruipbarradas at sapo.pt>> > <mailto:ruipbarradas at sapo.pt <mailto:ruipbarradas at sapo.pt> >? > <mailto:ruipbarradas at sapo.pt <mailto:ruipbarradas at sapo.pt>>>> >? >? >? > To: rain1290 <rain1290 at aim.com <mailto:rain1290 at aim.com> > <mailto:rain1290 at aim.com <mailto:rain1290 at aim.com>> >? > <mailto:rain1290 at aim.com <mailto:rain1290 at aim.com> > <mailto:rain1290 at aim.com <mailto:rain1290 at aim.com>>>>; r-help >? >? > <r-help at R-project.org <mailto:r-help at R-project.org> > <mailto:r-help at R-project.org <mailto:r-help at R-project.org>> >? > <mailto:r-help at R-project.org <mailto:r-help at R-project.org> > <mailto:r-help at R-project.org <mailto:r-help at R-project.org>>>>; >? >? >? > r-sig-geo <r-sig-geo at r-project.org > <mailto:r-sig-geo at r-project.org> >? > <mailto:r-sig-geo at r-project.org <mailto:r-sig-geo at r-project.org>> > <mailto:r-sig-geo at r-project.org <mailto:r-sig-geo at r-project.org> >? > <mailto:r-sig-geo at r-project.org <mailto:r-sig-geo at r-project.org>>>> >? >? >? > Sent: Wed, Jun 5, 2019 10:52 am >? >? >? > Subject: Re: [R] Plotting more than one regression line in ggplot >? >? >? > >? >? >? > Hello, >? >? >? > >? >? >? > This is pretty basic ggplot. >? >? >? > >? >? >? > >? >? >? > lm1 <- ggplot(onepctCO2MEDIAN, aes(x, y)) + >? >? >? >? ? geom_point(colour = 'blue') + >? >? >? >? ? geom_smooth(method = 'lm') >? >? >? > >? >? >? > lm1 >? >? >? > >? >? >? > >? >? >? > If you want to combine several datasets, you will have to have a >? >? >? > variable telling which dataset is which. In the example below, > this is >? >? >? > column 'id'. >? >? >? > >? >? >? > >? >? >? > onepctCO2MEDIAN2 <- onepctCO2MEDIAN >? >? >? > onepctCO2MEDIAN2$y <- jitter(onepctCO2MEDIAN2$y) + 2 >? >? >? > onepctCO2MEDIAN$id <- 1 >? >? >? > onepctCO2MEDIAN2$id <- 2 >? >? >? > df2 <- rbind(onepctCO2MEDIAN, onepctCO2MEDIAN2) >? >? >? > >? >? >? > ggplot(df2, aes(x, y, group = id, colour = factor(id))) + >? >? >? >? ? geom_point() + >? >? >? >? ? geom_smooth(method = 'lm') >? >? >? > >? >? >? > >? >? >? > Hope this helps, >? >? >? > >? >? >? > Rui Barradas >? >? >? > >? >? >? > ?s 15:21 de 05/06/19, rain1290--- via R-help escreveu: >? >? >? >? > I am trying to plot, using ggplot, a series of scatter plots > with >? >? >? > regression lines for several datasets. I started with the following >? >? >? > dataset, "onepectCO2MEDIAN". The data for this dataset is as > follows: >? >? >? >? >? ??? onepctCO2MEDIAN >? >? >? >? >? ??????????????????? x????????? y >? >? >? >? >? ??? layer.1?? 0.000000000? 0.0000000 >? >? >? >? >? ??? layer.2?? 0.006794447? 4.9002490 >? >? >? >? >? ??? layer.3?? 0.014288058? 0.1608000 >? >? >? >? >? ??? layer.4?? 0.022087920? 6.6349133 >? >? >? >? >? ??? layer.5?? 0.030797357 -1.2429506 >? >? >? >? >? ??? layer.6?? 0.038451072? 1.5643374 >? >? >? >? >? ??? layer.7?? 0.048087904 -2.2659035 >? >? >? >? >? ??? layer.8?? 0.058677729? 2.2070045 >? >? >? >? >? ??? layer.9?? 0.069261406 -2.3677001 >? >? >? >? >? ??? layer.10? 0.080524530 -1.0913506 >? >? >? >? >? ??? layer.11? 0.092760246? 0.4099940 >? >? >? >? >? ??? layer.12? 0.103789609 -0.1259727 >? >? >? >? >? ??? layer.13? 0.116953168 -2.4138253 >? >? >? >? >? ??? layer.14? 0.129253298? 7.0890257 >? >? >? >? >? ??? layer.15? 0.141710050 -0.7593539 >? >? >? >? >? ??? layer.16? 0.156002052? 0.0454416 >? >? >? >? >? ??? layer.17? 0.170648172 -1.5349683 >? >? >? >? >? ??? layer.18? 0.185318425? 6.5524201 >? >? >? >? >? ??? layer.19? 0.199463055 -0.8312563 >? >? >? >? >? ??? layer.20? 0.213513337 -2.5099183 >? >? >? >? >? ??? layer.21? 0.228839271? 0.1365968 >? >? >? >? >? ??? layer.22? 0.246981293 -1.3719845 >? >? >? >? >? ??? layer.23? 0.263012767 -0.8712988 >? >? >? >? >? ??? layer.24? 0.278505564? 0.6632584 >? >? >? >? >? ??? layer.25? 0.293658361? 0.7938036 >? >? >? >? >? ??? layer.26? 0.310747266? 3.4880637 >? >? >? >? >? ??? layer.27? 0.325990349 -4.4612208 >? >? >? >? >? ??? layer.28? 0.342517540? 0.0871734 >? >? >? >? >? ??? layer.29? 0.362751633 -1.4171578 >? >? >? >? >? ??? layer.30? 0.380199537 -0.9956508 >? >? >? >? >? ??? layer.31? 0.394992948? 0.3215526 >? >? >? >? >? ??? layer.32? 0.414373398? 3.1403866 >? >? >? >? >? ??? layer.33? 0.430690214 -0.7376099 >? >? >? >? >? ??? layer.34? 0.449738145 -2.4860541 >? >? >? >? >? ??? layer.35? 0.470167458 -3.4235858 >? >? >? >? >? ??? layer.36? 0.489019871? 0.4824748 >? >? >? >? >? ??? layer.37? 0.507242471 -0.9785386 >? >? >? >? >? ??? layer.38? 0.524314284? 8.5359684 >? >? >? >? >? ??? layer.39? 0.543750525? 5.4844742 >? >? >? >? >? ??? layer.40? 0.564234197? 3.2149367 >? >? >? >? >? ??? layer.41? 0.583679616? 3.9168916 >? >? >? >? >? ??? layer.42? 0.601459444? 4.4907020 >? >? >? >? >? ??? layer.43? 0.619924664? 6.5410410 >? >? >? >? >? ??? layer.44? 0.639932007? 4.8068650 >? >? >? >? >? ??? layer.45? 0.661347181? 8.1510170 >? >? >? >? >? ??? layer.46? 0.684117317? 0.2697413 >? >? >? >? >? ??? layer.47? 0.704829752 -0.1807501 >? >? >? >? >? ??? layer.48? 0.725045770? 9.7181249 >? >? >? >? >? ??? layer.49? 0.745165825? 1.5406466 >? >? >? >? >? ??? layer.50? 0.765016139 -1.6476041 >? >? >? >? >? ??? layer.51? 0.783461511? 4.8024603 >? >? >? >? >? ??? layer.52? 0.806382924? 4.0421516 >? >? >? >? >? ??? layer.53? 0.829241335? 9.3756512 >? >? >? >? >? ??? layer.54? 0.849924415? 5.3305050 >? >? >? >? >? ??? layer.55? 0.871352434? 7.5445803 >? >? >? >? >? ??? layer.56? 0.893632233? 6.4679547 >? >? >? >? >? ??? layer.57? 0.916052133? 2.8096065 >? >? >? >? >? ??? layer.58? 0.938579470? 5.3921661 >? >? >? >? >? ??? layer.59? 0.959907651? 7.2043689 >? >? >? >? >? ??? layer.60? 0.981643587? 3.3350806 >? >? >? >? >? ??? layer.61? 1.004116774? 8.8690707 >? >? >? >? >? ??? layer.62? 1.028363466? 1.7861299 >? >? >? >? >? ??? layer.63? 1.054009140? 6.2555038 >? >? >? >? >? ??? layer.64? 1.072440803? 7.6079236 >? >? >? >? >? ??? layer.65? 1.094457805? 7.6871483 >? >? >? >? >? ??? layer.66? 1.123176277? 4.7787764 >? >? >? >? >? ??? layer.67? 1.149430871 12.7110502 >? >? >? >? >? ??? layer.68? 1.170912921 -0.7156284 >? >? >? >? >? ??? layer.69? 1.196743071? 1.6490899 >? >? >? >? >? ??? layer.70? 1.218625903? 3.0363024 >? >? >? >? >? ??? layer.71? 1.241868377? 4.2974769 >? >? >? >? >? ??? layer.72? 1.267941594? 1.9543778 >? >? >? >? >? ??? layer.73? 1.290708780? 3.9986964 >? >? >? >? >? ??? layer.74? 1.313222289? 4.5179472 >? >? >? >? >? ??? layer.75? 1.339045882? 0.9337905 >? >? >? >? >? ??? layer.76? 1.362803459? 3.3050770 >? >? >? >? >? ??? layer.77? 1.384450197? 3.5422970 >? >? >? >? >? ??? layer.78? 1.409720302? 5.9973660 >? >? >? >? >? ??? layer.79? 1.435851157? 0.5081869 >? >? >? >? >? ??? layer.80? 1.455592215? 7.9661630 >? >? >? >? >? ??? layer.81? 1.479495347? 9.9460496 >? >? >? >? >? ??? layer.82? 1.506051958? 3.7908372 >? >? >? >? >? ??? layer.83? 1.525728464? 2.5735847 >? >? >? >? >? ??? layer.84? 1.549362063 10.1404974 >? >? >? >? >? ??? layer.85? 1.573440671 13.7408304 >? >? >? >? >? ??? layer.86? 1.600278735? 0.9335771 >? >? >? >? >? ??? layer.87? 1.623879492? 9.7588742 >? >? >? >? >? ??? layer.88? 1.650029302? 1.2769395 >? >? >? >? >? ??? layer.89? 1.672362328 13.4970906 >? >? >? >? >? ??? layer.90? 1.700221121 10.2087502 >? >? >? >? >? ??? layer.91? 1.724793375? 1.6811275 >? >? >? >? >? ??? layer.92? 1.751070559? 6.1178992 >? >? >? >? >? ??? layer.93? 1.778022110 -0.1567626 >? >? >? >? >? ??? layer.94? 1.803022087? 3.8237479 >? >? >? >? >? ??? layer.95? 1.830668867? 4.4331468 >? >? >? >? >? ??? layer.96? 1.855736911? 5.9790707 >? >? >? >? >? ??? layer.97? 1.882615030 11.3104333 >? >? >? >? >? ??? layer.98? 1.909218490? 8.2142607 >? >? >? >? >? ??? layer.99? 1.938130021 15.3209674 >? >? >? >? >? ??? layer.100 1.963727593? 5.8178217 >? >? >? >? >? ??? layer.101 1.993271947? 9.6004907 >? >? >? >? >? ??? layer.102 2.022548139? 3.4063646 >? >? >? >? >? ??? layer.103 2.050679922? 4.7375010 >? >? >? >? >? ??? layer.104 2.078064442? 3.0133019 >? >? >? >? >? ??? layer.105 2.104113460? 5.5659522 >? >? >? >? >? ??? layer.106 2.133597612 12.0346333 >? >? >? >? >? ??? layer.107 2.164026260 -0.4028320 >? >? >? >? >? ??? layer.108 2.194852829 10.5996780 >? >? >? >? >? ??? layer.109 2.224257946? 5.4479584 >? >? >? >? >? ??? layer.110 2.252194643? 4.7052374 >? >? >? >? >? ??? layer.111 2.277335048 14.0962019 >? >? >? >? >? ??? layer.112 2.304058313? 5.7149016 >? >? >? >? >? ??? layer.113 2.330930233? 3.7780072 >? >? >? >? >? ??? layer.114 2.357022762? 4.4120620 >? >? >? >? >? ??? layer.115 2.386489272? 4.1866085 >? >? >? >? >? ??? layer.116 2.417503953? 6.9078802 >? >? >? >? >? ??? layer.117 2.448524356? 2.7825739 >? >? >? >? >? ??? layer.118 2.478698969? 7.6171786 >? >? >? >? >? ??? layer.119 2.510175705 10.2410603 >? >? >? >? >? ??? layer.120 2.539697886? 8.1820711 >? >? >? >? >? ??? layer.121 2.567915559? 4.8275494 >? >? >? >? >? ??? layer.122 2.597463250 19.1624883 >? >? >? >? >? ??? layer.123 2.627518773 16.0677109 >? >? >? >? >? ??? layer.124 2.658759236 12.5897081 >? >? >? >? >? ??? layer.125 2.692401528? 9.2907988 >? >? >? >? >? ??? layer.126 2.721903205? 7.4262502 >? >? >? >? >? ??? layer.127 2.753021359? 9.3902518 >? >? >? >? >? ??? layer.128 2.786313415 12.6193550 >? >? >? >? >? ??? layer.129 2.819564104 11.1121040 >? >? >? >? >? ??? layer.130 2.850823164 15.7907100 >? >? >? >? >? ??? layer.131 2.880394101 10.7425287 >? >? >? >? >? ??? layer.132 2.911391258? 7.7971430 >? >? >? >? >? ??? layer.133 2.942965150? 8.8060858 >? >? >? >? >? ??? layer.134 2.974468350 17.5606266 >? >? >? >? >? ??? layer.135 3.008983612 17.3088605 >? >? >? >? >? ??? layer.136 3.040015221 13.4500543 >? >? >? >? >? ??? layer.137 3.072668672 14.6377884 >? >? >? >? >? ??? layer.138 3.105982423? 8.0798552dput(onepctCO2MEDIAN) >? >? >? > dput(onepctCO2MEDIAN) >? >? >? >? >? ??? structure(list(x = c(0, 0.00679444684647024, >? > 0.014288058038801, >? >? >? >? >? ??? 0.0220879195258021, >? >? >? > 0.0307973567396402,0.0384510718286037,0.0480879042297602, >? >? >? >? >? ??? 0.0586777292191982, 0.0692614056169987, >? >? >? > 0.080524530261755,0.0927602462470531, >? >? >? >? >? ??? 0.103789608925581, 0.116953168064356, 0.129253298044205, >? >? >? > 0.141710050404072, >? >? >? >? >? ??? 0.156002052128315, 0.170648172497749, 0.185318425297737, >? >? >? > 0.199463054537773, >? >? >? >? >? ??? 0.21351333707571, 0.22883927077055, 0.246981292963028, >? >? >? > 0.263012766838074, >? >? >? >? >? ??? 0.278505563735962, 0.29365836083889, 0.310747265815735, >? >? >? > 0.325990349054337, >? >? >? >? >? ??? 0.342517539858818, 0.362751632928848, 0.380199536681175, >? >? >? > 0.39499294757843, >? >? >? >? >? ??? 0.414373397827148, 0.430690214037895, 0.449738144874573, >? >? >? > 0.470167458057404, >? >? >? >? >? ??? 0.489019870758057, 0.507242470979691, 0.524314284324646, >? >? >? > 0.543750524520874, >? >? >? >? >? ??? 0.56423419713974, 0.583679616451263, 0.601459443569183, >? >? >? > 0.619924664497375, >? >? >? >? >? ??? 0.639932006597519, 0.661347180604935, 0.684117317199707, >? >? >? > 0.704829752445221, >? >? >? >? >? ??? 0.725045770406723, 0.745165824890137, 0.765016138553619, >? >? >? > 0.783461511135101, >? >? >? >? >? ??? 0.806382924318314, 0.829241335391998, 0.84992441534996, >? >? >? > 0.871352434158325, >? >? >? >? >? ??? 0.893632233142853, 0.916052132844925, 0.938579469919205, >? >? >? > 0.959907650947571, >? >? >? >? >? ??? 0.981643587350845, 1.00411677360535, 1.02836346626282, >? >? >? > 1.05400913953781, >? >? >? >? >? ??? 1.07244080305099, 1.09445780515671, 1.12317627668381, >? >? >? > 1.14943087100983, >? >? >? >? >? ??? 1.17091292142868, 1.19674307107925, 1.21862590312958, >? >? >? > 1.24186837673187, >? >? >? >? >? ??? 1.26794159412384, 1.2907087802887, 1.31322228908539, >? >? >? > 1.33904588222504, >? >? >? >? >? ??? 1.36280345916748, 1.38445019721985, 1.40972030162811, >? >? >? > 1.43585115671158, >? >? >? >? >? ??? 1.45559221506119, 1.47949534654617, 1.50605195760727, >? >? >? > 1.52572846412659, >? >? >? >? >? ??? 1.5493620634079, 1.5734406709671, 1.60027873516083, >? >? >? > 1.62387949228287, >? >? >? >? >? ??? 1.65002930164337, 1.67236232757568, 1.70022112131119, >? >? >? > 1.72479337453842, >? >? >? >? >? ??? 1.75107055902481, 1.77802211046219, 1.80302208662033, >? >? >? > 1.83066886663437, >? >? >? >? >? ??? 1.85573691129684, 1.88261502981186, 1.90921849012375, >? >? >? > 1.93813002109528, >? >? >? >? >? ??? 1.96372759342194, 1.99327194690704, 2.02254813909531, >? >? >? > 2.05067992210388, >? >? >? >? >? ??? 2.07806444168091, 2.1041134595871, 2.13359761238098, >? >? >? > 2.16402626037598, >? >? >? >? >? ??? 2.19485282897949, 2.2242579460144, 2.25219464302063, >? >? >? > 2.27733504772186, >? >? >? >? >? ??? 2.30405831336975, 2.33093023300171, 2.35702276229858, >? >? >? > 2.38648927211761, >? >? >? >? >? ??? 2.41750395298004, 2.44852435588837, 2.47869896888733, >? >? >? > 2.51017570495605, >? >? >? >? >? ??? 2.53969788551331, 2.567915558815, 2.59746325016022, >? >? >? > 2.62751877307892, >? >? >? >? >? ??? 2.65875923633575, 2.69240152835846, 2.72190320491791, >? >? >? > 2.75302135944366, >? >? >? >? >? ??? 2.78631341457367, 2.8195641040802, 2.85082316398621, >? >? >? > 2.88039410114288, >? >? >? >? >? ??? 2.91139125823975, 2.94296514987946, 2.97446835041046, >? >? >? > 3.00898361206055, >? >? >? >? >? ??? 3.04001522064209, 3.07266867160797, 3.10598242282867), y >? > c(0, >? >? >? >? >? ??? 4.90024901723162, 0.160799993152722, 6.63491326258641, >? >? >? > -1.24295055804536, >? >? >? >? >? ??? 1.56433744259162, -2.26590352245208, 2.20700446463354, >? >? >? > -2.36770012911069, >? >? >? >? >? ??? -1.09135061899174, 0.409993989292701, -0.125972681525582, >? >? >? > -2.41382533818026, >? >? >? >? >? ??? 7.08902570153028, -0.759353880417294, 0.0454415959640926, >? >? >? > -1.53496826259972, >? >? >? >? >? ??? 6.55242014096194, -0.831256280861552, -2.50991825629084, >? >? >? > 0.136596820654013, >? >? >? >? >? ??? -1.37198445498419, -0.871298832596736, 0.663258363762466, >? >? >? > 0.793803634291308, >? >? >? >? >? ??? 3.48806373666998, -4.46122081238949, 0.0871733966938564, >? >? >? > -1.41715777257774, >? >? >? >? >? ??? -0.995650815648318, 0.32155262317503, 3.14038657369241, >? >? >? > -0.737609879885404, >? >? >? >? >? ??? -2.48605406511292, -3.423585843908, 0.482474753780281, >? >? >? > -0.978538630093809, >? >? >? >? >? ??? 8.53596837794201, 5.48447420320695, 3.21493665820644, >? >? >? > 3.91689160157513, >? >? >? >? >? ??? 4.49070195980797, 6.54104103157039, 4.80686500146557, >? >? >? > 8.15101701282067, >? >? >? >? >? ??? 0.26974132191657, -0.180750068063062, 9.71812491230244, >? >? >? > 1.54064657400204, >? >? >? >? >? ??? -1.64760408795688, 4.80246028991894, 4.04215159914344, >? >? >? > 9.37565121768513, >? >? >? >? >? ??? 5.33050496938428, 7.54458026088508, 6.46795470819342, >? >? >? > 2.80960651433971, >? >? >? >? >? ??? 5.39216613235986, 7.20436888038562, 3.3350806460997, >? >? >? > 8.86907069895943, >? >? >? >? >? ??? 1.78612988613659, 6.25550382050395, 7.60792364896564, >? >? >? > 7.68714830528144, >? >? >? >? >? ??? 4.77877638957615, 12.7110501777314, -0.715628443181046, >? >? >? > 1.64908991824022, >? >? >? >? >? ??? 3.03630240714679, 4.29747688442346, 1.95437780501881, >? >? >? > 3.99869636910933, >? >? >? >? >? ??? 4.51794724689848, 0.933790484492299, 3.30507700050003, >? >? >? > 3.5422970157433, >? >? >? >? >? ??? 5.99736597322524, 0.508186860060022, 7.96616300581067, >? >? >? > 9.94604963036295, >? >? >? >? >? ??? 3.79083717222623, 2.57358468532258, 10.1404974171776, >? >? >? > 13.7408303595752, >? >? >? >? >? ??? 0.933577123801399, 9.75887417074129, 1.27693947132921, >? >? >? > 13.4970905965787, >? >? >? >? >? ??? 10.2087501765735, 1.68112753028756, 6.1178991508927, >? >? >? > -0.156762622680077, >? >? >? >? >? ??? 3.82374791691426, 4.43314678736265, 5.97907067167507, >? >? >? > 11.3104332518482, >? >? >? >? >? ??? 8.21426074201525, 15.320967360602, 5.81782169471483, >? >? >? > 9.6004907412354, >? >? >? >? >? ??? 3.40636455909704, 4.73750103921864, 3.0133019468806, >? >? >? > 5.56595224859066, >? >? >? >? >? ??? 12.0346332527215, -0.40283199827104, 10.5996779538754, >? >? >? > 5.44795836991128, >? >? >? >? >? ??? 4.70523736412729, 14.096201892183, 5.71490161813391, >? >? >? > 3.77800720810782, >? >? >? >? >? ??? 4.41206200639436, 4.18660847858423, 6.90788020044911, >? >? >? > 2.78257393345915, >? >? >? >? >? ??? 7.61717857379431, 10.2410602647684, 8.18207106836167, >? >? >? > 4.82754943871433, >? >? >? >? >? ??? 19.1624882857155, 16.0677109398509, 12.589708067017, >? >? >? > 9.29079879799404, >? >? >? >? >? ??? 7.42625019725314, 9.39025179806185, 12.6193550331438, >? >? >? > 11.1121039747257, >? >? >? >? >? ??? 15.7907099734986, 10.7425286789233, 7.79714300307344, >? >? >? > 8.80608578166101, >? >? >? >? >? ??? 17.5606266346039, 17.3088604929222, 13.4500543478523, >? >? >? > 14.6377884248645, >? >? >? >? >? ??? 8.07985518296064)), class = "data.frame", row.names >? >? > c("layer.1", >? >? >? >? >? ??? "layer.2", "layer.3", "layer.4", "layer.5", "layer.6", >? > "layer.7", >? >? >? >? >? ??? "layer.8", "layer.9", "layer.10", "layer.11", "layer.12", >? >? >? > "layer.13", >? >? >? >? >? ??? "layer.14", "layer.15", "layer.16", "layer.17", "layer.18", >? >? >? > "layer.19", >? >? >? >? >? ??? "layer.20", "layer.21", "layer.22", "layer.23", "layer.24", >? >? >? > "layer.25", >? >? >? >? >? ??? "layer.26", "layer.27", "layer.28", "layer.29", "layer.30", >? >? >? > "layer.31", >? >? >? >? >? ??? "layer.32", "layer.33", "layer.34", "layer.35", "layer.36", >? >? >? > "layer.37", >? >? >? >? >? ??? "layer.38", "layer.39", "layer.40", "layer.41", "layer.42", >? >? >? > "layer.43", >? >? >? >? >? ??? "layer.44", "layer.45", "layer.46", "layer.47", "layer.48", >? >? >? > "layer.49", >? >? >? >? >? ??? "layer.50", "layer.51", "layer.52", "layer.53", "layer.54", >? >? >? > "layer.55", >? >? >? >? >? ??? "layer.56", "layer.57", "layer.58", "layer.59", "layer.60", >? >? >? > "layer.61", >? >? >? >? >? ??? "layer.62", "layer.63", "layer.64", "layer.65", "layer.66", >? >? >? > "layer.67", >? >? >? >? >? ??? "layer.68", "layer.69", "layer.70", "layer.71", "layer.72", >? >? >? > "layer.73", >? >? >? >? >? ??? "layer.74", "layer.75", "layer.76", "layer.77", "layer.78", >? >? >? > "layer.79", >? >? >? >? >? ??? "layer.80", "layer.81", "layer.82", "layer.83", "layer.84", >? >? >? > "layer.85", >? >? >? >? >? ??? "layer.86", "layer.87", "layer.88", "layer.89", "layer.90", >? >? >? > "layer.91", >? >? >? >? >? ??? "layer.92", "layer.93", "layer.94", "layer.95", "layer.96", >? >? >? > "layer.97", >? >? >? >? >? ??? "layer.98", "layer.99", "layer.100", "layer.101", > "layer.102", >? >? >? >? >? ??? "layer.103", "layer.104", "layer.105", "layer.106", >? > "layer.107", >? >? >? >? >? ??? "layer.108", "layer.109", "layer.110", "layer.111", >? > "layer.112", >? >? >? >? >? ??? "layer.113", "layer.114", "layer.115", "layer.116", >? > "layer.117", >? >? >? >? >? ??? "layer.118", "layer.119", "layer.120", "layer.121", >? > "layer.122", >? >? >? >? >? ??? "layer.123", "layer.124", "layer.125", "layer.126", >? > "layer.127", >? >? >? >? >? ??? "layer.128", "layer.129", "layer.130", "layer.131", >? > "layer.132", >? >? >? >? >? ??? "layer.133", "layer.134", "layer.135", "layer.136", >? > "layer.137", >? >? >? >? >? ??? "layer.138")) >? >? >? >? > I started with the following to generate the first > regression line >? >? >? > and scatter plot:??? lm<-ggplot(onepctCO2MEDIAN) + >? >? >? >? >? ??? geom_jitter(aes(RCP1pctCO2cumulativeMedian[1:138], >? > departurea), >? >? >? >? >? ??? colour="blue") + >? >? > geom_smooth(aes(RCP1pctCO2cumulativeMedian[1:138], >? >? >? >? >? ??? departurea), method=lm) >? >? >? >? > But I receive this error:? ??Warning message: >? >? >? >? >? ??? Computation failed in `stat_smooth()`: >? >? >? >? >? ??? 'what' must be a function or character string >? >? >? >? > A blue scatter plot is successfully generated, but the > problem is >? >? >? > that the regression line does not appear, presumably related to the >? >? >? > above warning. >? >? >? >? > Is there a reason for this? I would appreciate any assistance! >? >? >? >? > ??? [[alternative HTML version deleted]] >? >? >? > >? >? >? >? > >? >? >? >? > ______________________________________________ >? >? >? >? > R-help at r-project.org <mailto:R-help at r-project.org> > <mailto:R-help at r-project.org <mailto:R-help at r-project.org>> >? > <mailto:R-help at r-project.org <mailto:R-help at r-project.org> > <mailto:R-help at r-project.org <mailto:R-help at r-project.org>>> mailing list -- >? >? > To UNSUBSCRIBE and more, see >? >? >? >? > https://stat.ethz.ch/mailman/listinfo/r-help >? >? >? >? > PLEASE do read the posting guide >? >? >? > http://www.R-project.org/posting-guide.html >? >? >? >? > and provide commented, minimal, self-contained, reproducible > code. >? >? >? > >? >? >? >? >[[alternative HTML version deleted]]